Functional evidence that Activin/Nodal signaling is required for establishing the dorsal-ventral axis in the annelid .

Development

Whitney Laboratory for Marine Bioscience, University of Florida, 9505 Ocean Shore Boulevard, St Augustine, FL 32080-8610, USA

Published: September 2020

The TGF-β superfamily comprises two distinct branches: the Activin/Nodal and BMP pathways. During development, signaling by this superfamily regulates a variety of embryological processes, and it has a conserved role in patterning the dorsal-ventral body axis. Recent studies show that BMP signaling establishes the dorsal-ventral axis in some mollusks. However, previous pharmacological inhibition studies in the annelid , a sister clade to the mollusks, suggests that the dorsal-ventral axis is patterned via Activin/Nodal signaling. Here, we determine the role of both the Activin/Nodal and BMP pathways as they function in axis patterning. Antisense morpholino oligonucleotides were targeted to and , transcription factors specific to the Activin/Nodal and BMP pathways, respectively. Following microinjection of zygotes, resulting morphant larvae were scored for axial anomalies. We demonstrate that the Activin/Nodal pathway of the TGF-β superfamily, but not the BMP pathway, is the primary dorsal-ventral patterning signal in These results demonstrate variation in the molecular control of axis patterning across spiralians, despite sharing a conserved cleavage program. We suggest that these findings represent an example of developmental system drift.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7522025PMC
http://dx.doi.org/10.1242/dev.189373DOI Listing

Publication Analysis

Top Keywords

dorsal-ventral axis
12
activin/nodal bmp
12
bmp pathways
12
activin/nodal signaling
8
tgf-β superfamily
8
axis patterning
8
activin/nodal
6
axis
6
dorsal-ventral
5
bmp
5

Similar Publications

Ventilatory drive is modulated by a variety of neurochemical inputs that converge on spatially oriented clusters of cells within the brainstem. This regulation is required to maintain energy homeostasis and is essential to sustain life across all mammalian organisms. Therefore, the anatomical orientation of these cellular clusters during development must have a defined mechanistic basis with redundant genomic variants.

View Article and Find Full Text PDF

Sensing-based deep brain stimulation should optimally consider both the motor and neuropsychiatric domain to maximize quality of life of Parkinson's disease (PD) patients. Here we characterize the neurophysiological properties of the subthalamic nucleus (STN) in 69 PD patients using a newly established neurophysiological gradient metric and contextualize it with motor symptoms and apathy. We could evidence a STN power gradient that holds most of the spectral information between 5 and 30 Hz spanning along the dorsal-ventral axis.

View Article and Find Full Text PDF

A decline in hippocampal function has long been associated with the progression of cognitive impairments in patients with Alzheimer's disease (AD). The disruption of hippocampal synaptic plasticity [primarily the reduction of long-term potentiation LTP] by excess production of soluble beta-amyloid (Aβ) has long been accepted as the mechanism by which AD pathology impairs memory, at least during the early stages of AD pathogenesis. However, the premise that hippocampal LTP underpins the formation of associative, long-term memories has been challenged.

View Article and Find Full Text PDF

Hemispheric annealing and lateralization under psychedelics (HEALS): A novel hypothesis of psychedelic action in the brain.

J Psychopharmacol

December 2024

Center for Psychedelic Drug Research and Education, College of Social Work, The Ohio State University, Columbus, OH, USA.

Current models of psychedelic action in the brain propose changes along the dorsal-ventral and anterior-posterior axes but neglect to address the lateral axis. This article proposes a novel model of psychedelic action called HEALS (Hemispheric Annealing and Lateralization Under Psychedelics) which involves the reversal of the typical hierarchical relationship between the two hemispheres of the brain. In typical modes of consciousness, the hemispheres act in parallel process with the left predominating.

View Article and Find Full Text PDF

In developing embryos, cells acquire distinct identities depending on their position in a tissue. Secreted signalling molecules, known as morphogens, act as long-range cues to provide the spatial information that controls these cell fate decisions. In several tissues, both the level and the duration of morphogen signalling appear to be important for determining cell fates.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!