Rational drug design is an approach based on detailed knowledge of molecular interactions and dynamic of bio-molecules. This approach involves designing new digital and interactive tools including classical desktop interaction devices as well as advanced ones such as haptic arms or virtual reality devices. These approaches however struggle to deal with flexibility of bio-molecules by simultaneously steering the numerous degrees of freedom. We propose a new method that follows a direct interaction approach by implementing an innovative methodology benefiting from a physical, modular and articulated molecular interface augmented by wireless embedded sensors. The goal is to create, design and steer its in silico twin virtual model and better interact with dynamic molecular models.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7570834PMC
http://dx.doi.org/10.3390/s20185415DOI Listing

Publication Analysis

Top Keywords

physical modular
8
modular articulated
8
articulated interface
4
interface interactive
4
molecular
4
interactive molecular
4
molecular manipulation
4
manipulation rational
4
rational drug
4
drug design
4

Similar Publications

Ligand-Conditioned Side Chain Packing for Flexible Molecular Docking.

J Chem Theory Comput

January 2025

State Key Laboratory of Physical Chemistry of Solid Surfaces and Fujian Provincial Key Laboratory of Theoretical and Computational Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, P. R. China.

Molecular docking is a crucial technique for elucidating protein-ligand interactions. Machine learning-based docking methods offer promising advantages over traditional approaches, with significant potential for further development. However, many current machine learning-based methods face challenges in ensuring the physical plausibility of generated docking poses.

View Article and Find Full Text PDF

This paper deals with a "digital twin" (DT) approach for processing, reprocessing, and scrapping (P/R/S) technology running on a modular production system (MPS) assisted by a mobile cyber-physical robotic system (MCPRS). The main hardware architecture consists of four line-shaped workstations (WSs), a wheeled mobile robot (WMR) equipped with a robotic manipulator (RM) and a mobile visual servoing system (MVSS) mounted on the end effector. The system architecture integrates a hierarchical control system where each of the four WSs, in the MPS, is controlled by a Programable Logic Controller (PLC), all connected via Profibus DP to a central PLC.

View Article and Find Full Text PDF

Clinical motion analysis plays an important role in the diagnosis and treatment of mobility-limiting diseases. Within this assessment, relative (point-to-point) tracking of extremities could benefit from increased accuracy. Given the limitations of current wearable sensor technology, supplementary spatial data such as distance estimates could provide added value.

View Article and Find Full Text PDF

Background: Long COVID, a heterogeneous condition characterized by a range of physical and neuropsychiatric presentations, can be presented with a proportion of COVID-19-infected individuals.

Methods: Transcriptomic data sets of those within gene expression profiles of COVID-19, long COVID, and healthy controls were retrieved from the GEO database. Differentially expressed genes (DEGs) falling under COVID-19 and long COVID were identified with R packages, and contemporaneously conducted module detection was performed with the Modular Pharmacology Platform (http://112.

View Article and Find Full Text PDF

This study designs and develops a wearable exoskeleton piano assistance system for individuals recovering from neurological injuries, aiming to help users regain the ability to perform complex tasks such as playing the piano. While soft robotic exoskeletons have proven effective in rehabilitation therapy and daily activity assistance, challenges remain in performing highly dexterous tasks due to structural complexity and insufficient motion accuracy. To address these issues, we developed a modular division method based on multi-domain mapping and a top-down process model.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!