Targeting Aging Pathways in Chronic Obstructive Pulmonary Disease.

Int J Mol Sci

Division of Pulmonary, Allergy and Critical Care Medicine, Department of Medicine, The University of Alabama at Birmingham, Birmingham, AL 35294, USA.

Published: September 2020

Chronic obstructive pulmonary disease (COPD) has become a global epidemic and is the third leading cause of death worldwide. COPD is characterized by chronic airway inflammation, loss of alveolar-capillary units, and progressive decline in lung function. Major risk factors for COPD are cigarette smoking and aging. COPD-associated pathomechanisms include multiple aging pathways such as telomere attrition, epigenetic alterations, altered nutrient sensing, mitochondrial dysfunction, cell senescence, stem cell exhaustion and chronic inflammation. In this review, we will highlight the current literature that focuses on the role of age and aging-associated signaling pathways as well as their impact on current treatment strategies in the pathogenesis of COPD. Furthermore, we will discuss established and experimental COPD treatments including senolytic and anti-aging therapies and their potential use as novel treatment strategies in COPD.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7555616PMC
http://dx.doi.org/10.3390/ijms21186924DOI Listing

Publication Analysis

Top Keywords

aging pathways
8
chronic obstructive
8
obstructive pulmonary
8
pulmonary disease
8
treatment strategies
8
copd
6
targeting aging
4
chronic
4
pathways chronic
4
disease chronic
4

Similar Publications

Nucleus pulposus cell (NPC) senescence contributes to intervertebral disc degeneration (IVDD). However, the underlying molecular mechanisms are not fully understood. In this study, it is demonstrated that angiotensin-converting enzyme 2 (ACE2) counteracted the aging of NPCs and IVDD at the cellular and physiological levels.

View Article and Find Full Text PDF

Purpose: Previous studies have reported divergent sexual responses to aging; however, specific variations in gene expression between aging males and females and their potential association with age-related retinal diseases remain unclear. This study collected data from public databases and developed a comprehensive comparison of retina between aging females and males.

Methods: Single-cell RNA (scRNA) and bulk RNA sequencing data of the aging retina from females and males in public databases were utilized for integrated analysis to investigate sex-biased expression in retina.

View Article and Find Full Text PDF

Combined exercise-induced modulation of Notch pathway and muscle quality in senescence-accelerated mice.

Pflugers Arch

January 2025

School of Physical Education and Sport of Ribeirão Preto, University of São Paulo (USP), Avenida Bandeirantes, 3900, Monte Alegre, Ribeirão Preto, São Paulo, 14040-907, Brazil.

The Notch signaling pathway is crucial for skeletal muscle development, regeneration, inflammation, and aging. This study investigated the association between interleukin-10 (IL-10) and the Notch pathway in C2C12 cells, as well as explored the effects of combined endurance and resistance exercise on the Notch and autophagy pathways in the skeletal muscle of senescence-accelerated mouse-resistant 1 Sedentary (SAMR1 CT), SAMR1 exercised (SAMR1 EX), senescence-accelerated prone mouse 8 Sedentary (SAMP8 CT), and SAMP8 exercised (SAMP8 EX). C2C12 myoblasts were transfected with siIL-10.

View Article and Find Full Text PDF

Quinine inhibits myogenic differentiation by disrupting AKT signaling pathway.

Toxicol Res

January 2025

Department of Pharmacy, Daegu Catholic University, 13-13 Hayang-ro, Hayang-eup, Gyeongsan-Si, Gyeongbuk 38430 Republic of Korea.

Sarcopenia is a disease characterized by decreased muscle fibers and mass. Although it mainly affects the older adults, it can also occur in various age groups as a secondary effect of medications used for treating certain diseases, such as cancer and diabetes. With population aging, sarcopenia has drawn significant attention owing to its increasing prevalence.

View Article and Find Full Text PDF

High BMP7 Expression May Worsen Airway Disease in COPD by Altering Epithelial Cell Behavior.

Int J Chron Obstruct Pulmon Dis

January 2025

Department of Obstetrics and Gynecology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, People's Republic of China.

Purpose: Airway disease is the main pathological basis of chronic obstructive pulmonary disease (COPD), but the underlying mechanisms are unknown. Bone morphogenetic protein-7 (BMP7) is a multi-functional growth factor that belongs to the transforming growth factor superfamily, which affects the regulation of proliferation, differentiation, and apoptosis. Previous research has shown that BMP7 is highly expressed in the airway epithelia of patients with COPD, but its role in airway disease has not been fully elucidated.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!