Paradoxically, risk assessments for the majority of chemicals lack any quantitative characterization as to the likelihood, incidence, or severity of the risks involved. The relatively few cases where "risk" is truly quantified are based on either epidemiologic data or extrapolation of experimental animal cancer bioassay data. The paucity of chemicals and health endpoints for which such data are available severely limits the ability of decisionmakers to account for the impacts of chemical exposures on human health. The development by the World Health Organization International Programme on Chemical Safety (WHO/IPCS) in 2014 of a comprehensive framework for probabilistic dose-response assessment has opened the door to a myriad of potential advances to better support decision making. Building on the pioneering work of Evans, Hattis, and Slob from the 1990s, the WHO/IPCS framework provides both a firm conceptual foundation as well as practical implementation tools to simultaneously assess uncertainty, variability, and severity of effect as a function of exposure. Moreover, such approaches do not depend on the availability of epidemiologic data, nor are they limited to cancer endpoints. Recent work has demonstrated the broad feasibility of such approaches in order to estimate the functional relationship between exposure level and the incidence or severity of health effects. While challenges remain, such as better characterization of the relationship between endpoints observed in experimental animal or in vitro studies and human health effects, the WHO/IPCS framework provides a strong basis for expanding the breadth of risk management decision contexts supported by chemical risk assessment.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8310576 | PMC |
http://dx.doi.org/10.1111/risa.13595 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!