Solid-State Effect Induced Thermally Activated Delayed Fluorescence with Tunable Emission: A Multiscale Study.

J Phys Chem A

Shandong Province Key Laboratory of Medical Physics and Image Processing Technology, School of Physics and Electronics, Shandong Normal University, 250014 Jinan, China.

Published: October 2020

Thermally activated delayed fluorescence (TADF) molecules with tunable solid-state luminescence have shown great application potential in organic light-emitting diodes. However, theoretical studies on luminescence properties of organic emitters with consideration of solid-state effect are limited. In this work, the photophysical properties of a difluoroboron β-diketonate-based molecule (M1) in liquid, crystal, and amorphous states are studied using multiscale methods combined with the thermal vibration correlation function theory. Our results indicate that the geometric structures of M1 in liquid with toluene and crystal state are all in straight-chain form. However, M1 in amorphous state is subjected to form bending deformation at the triphenylamine unit under collaboration between intramolecular π-hydrogen bond and disordered intermolecular interactions. Moreover, in the amorphous state, the energy gap between the first singlet excited state (S) and the first triplet excited state (T) (Δ) of M1 is significantly reduced, and the spin-orbit coupling constant is remarkably increased in comparison with those of M1 in liquid with toluene and crystal state. As a result, the up-conversion of T → S in the amorphous state is favored, and remarkable TADF is thus observed. Besides, M1 in the solid state gives fluorescence in red shift emission compared to that in liquid with toluene. On the basis of the results above, we further theoretically design a new molecule noted as M2 which emits fluorescence in the near-infrared region in the solid state. Our theoretical results help in understanding the light-emitting mechanism induced by the solid-state effect and provide information for designing new-type TADF emitters with tunable solid-state emission.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.jpca.0c07152DOI Listing

Publication Analysis

Top Keywords

liquid toluene
12
amorphous state
12
state
9
thermally activated
8
activated delayed
8
delayed fluorescence
8
tunable solid-state
8
toluene crystal
8
crystal state
8
excited state
8

Similar Publications

Bicontinuous structures are exquisite interpenetrating constructs with an optimal balance between connectivity and surface area. Such unique geometry favors exceptional mechanical properties and efficient inward mass diffusion essential for an absorbent material. Although bicontinuous structures are found across many length scales in nature, synthesizing artificial analogs using biological building blocks remains largely unexplored.

View Article and Find Full Text PDF

A potential link has been reported between skin exposure to aromatic amines, such as ortho-toluidine (OT) and 3,3'-dichloro-4,4'-diaminodiphenylmethane (MOCA), and bladder cancer cases observed in Japanese chemical factories. To evaluate this association, we explored the permeability of OT and MOCA through pig skin and investigated the subsequent changes in plasma and urine concentrations in rats following percutaneous exposure. Employing Yucatan micropig skin, we first executed a permeability test by affixing the skin to a diffusion cell and applying 14C-labeled OT or MOCA.

View Article and Find Full Text PDF

Fluorescence fluctuation spectroscopy experiments were conducted to better understand the complex mass transport dynamics of organic molecules in liquid-filled nanoporous media. Anodic aluminum oxide (AAO) membranes incorporating 10 and 20 nm diameter cylindrical pores were employed as model materials. Nile red (NR) dye was used as a fluorescent tracer.

View Article and Find Full Text PDF

High-purity hydrogen production from dehydrogenation of methylcyclohexane catalyzed by zeolite-encapsulated subnanometer platinum-iron clusters.

Nat Commun

January 2025

Engineering Research Center of Advanced Rare-Earth Materials of Ministry of Education, Department of Chemistry, Tsinghua University, Beijing, China.

Liquid organic hydrogen carriers (LOHCs) are considered promising carriers for large-scale H storage and transportation, among which the toluene-methylcyclohexane cycle has attracted great attention from industry and academia because of the low cost and its compatibility with the current infrastructure facility for the transportation of chemicals. The large-scale deployment of the H storage/transportation plants based on the toluene-methylcyclohexane cycle relies on the use of high-performance catalysts, especially for the H release process through the dehydrogenation of methylcyclohexane. In this work, we have developed a highly efficient catalyst for MCH dehydrogenation reaction by incorporating subnanometer PtFe clusters with precisely controlled composition and location within a rigid zeolite matrix.

View Article and Find Full Text PDF

Mechanistic Analysis of Peptide Affinity to Single-Walled Carbon Nanotubes and Volatile Organic Compounds Using Chemiresistors.

ACS Appl Mater Interfaces

January 2025

Air Force Research Laboratory, 711th Human Performance Wing, Wright-Patterson Air Force Base, Wright-Patterson AFB, Ohio 45433, United States.

Peptides, due to their diverse and controllable properties, are used as both liquid and gas phase recognition elements for both biological and chemical targets. While it is well understood how binding of a peptide to a biomolecule can be converted into a sensing event, there is not the same mechanistic level of understanding with regard to how peptides modulate the selectivity of semiconductor/conductor-based gas sensors. Notably, a rational, mechanistic study has not yet been performed to correlate peptide properties to the sensor response for volatile organic compounds (VOCs) as a function of chemical properties.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!