F-actin Regulates Osteoblastic Differentiation of Mesenchymal Stem Cells on TiO Nanotubes Through MKL1 and YAP/TAZ.

Nanoscale Res Lett

Shanghai Key Laboratory of Orthopaedic Implants, Department of Orthopaedic Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, People's Republic of China.

Published: September 2020

Titanium and titanium alloys are widely used in orthopedic implants. Modifying the nanotopography provides a new strategy to improve osseointegration of titanium substrates. Filamentous actin (F-actin) polymerization, as a mechanical loading structure, is generally considered to be involved in cell migration, endocytosis, cell division, and cell shape maintenance. Whether F-actin is involved and how it functions in nanotube-induced osteogenic differentiation of mesenchymal stem cells (MSCs) remain to be elucidated. In this study, we fabricated TiO nanotubes on the surface of a titanium substrate by anodic oxidation and characterized their features by scanning electron microscopy (SEM), X-ray energy dispersive analysis (EDS), and atomic force microscopy (AFM). Alkaline phosphatase (ALP) staining, Western blotting, qRT-PCR, and immunofluorescence staining were performed to explore the osteogenic potential, the level of F-actin, and the expression of MKL1 and YAP/TAZ. Our results showed that the inner diameter and roughness of TiO nanotubes increased with the increase of the anodic oxidation voltage from 30 to 70 V, while their height was 2 μm consistently. Further, the larger the tube diameter, the stronger the ability of TiO nanotubes to promote osteogenic differentiation of MSCs. Inhibiting F-actin polymerization by Cyto D inhibited osteogenic differentiation of MSCs as well as the expression of proteins contained in focal adhesion complexes such as vinculin (VCL) and focal adhesion kinase (FAK). In contrast, after Jasp treatment, polymerization of F-actin enhanced the expression of RhoA and transcription factors YAP/TAZ. Based on these data, we concluded that TiO nanotubes facilitated the osteogenic differentiation of MSCs, and this ability was enhanced with the increasing diameter of the nanotubes within a certain range (30-70 V). F-actin mediated this process through MKL1 and YAP/TAZ.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7511505PMC
http://dx.doi.org/10.1186/s11671-020-03415-9DOI Listing

Publication Analysis

Top Keywords

tio nanotubes
20
osteogenic differentiation
16
mkl1 yap/taz
12
differentiation mscs
12
differentiation mesenchymal
8
mesenchymal stem
8
stem cells
8
f-actin polymerization
8
anodic oxidation
8
focal adhesion
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!