Mixed strain dynamics are still not well or easily monitored although recently molecular identification methods have improved our knowledge. This study used a chromogenic differential plating medium that allows the discrimination of four of the main selected biofuel strains that are currently under development for ethanol production from cellulosic hydrolysates. Complete fermentation of hexoses and xylose was obtained with a yeast consortium composed of Spathaspora passalidarum, Scheffersomyces stipitis, Candida akabanensis and Saccharomyces cerevisiae. The results showed that C.akabanensis excessively dominated consortium balance. Reducing its inoculum from 33 to 4.8% improved population strain balance and fermentation efficiency. Comparison of the consortia with single strain fermentations showed that it optimize sugar consumption and ethanol yields. This simple and cheap method also has advantages compared with molecular methods, as the yeast strains do not need to be genetically marked and identified cell proportions are probably active in the fermentation system as compared to DNA determination methods.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s10295-020-02310-7 | DOI Listing |
Microb Cell Fact
January 2025
College of Architecture and Environment, Sichuan University, Chengdu, 610065, Sichuan, China.
Background: Continuous fermentation offers advantages in improving production efficiency and reducing costs, making it highly competitive for industrial ethanol production. A key requirement for Saccharomyces cerevisiae strains used in this process is their tolerance to high ethanol concentrations, which enables them to adapt to continuous fermentation conditions. To explore how yeast cells respond to varying levels of ethanol stress during fermentation, a two-month continuous fermentation was conducted.
View Article and Find Full Text PDFSci Rep
January 2025
Siriraj Center of Research Excellence in Dengue and Emerging Pathogens, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand.
Dengue is a mosquito-borne disease caused by dengue virus (DENV) infection, which remains a major public health concern worldwide owing to the lack of specific treatments or antiviral drugs available. This study investigated the potential repurposing of domperidone, an antiemetic and gastrokinetic agent, to control DENV infection. Domperidone was identified by pharmacophore-based virtual screening as a small molecule that can bind to both the viral envelope (E) and the nonstructural protein 1 (NS1) of DENV.
View Article and Find Full Text PDFMicrob Pathog
January 2025
Laboratorio Nacional para la Investigación en Inocuidad Alimentaria (LANIIA)-Nayarit, Universidad Autónoma de Nayarit, Tepic 63173, Nayarit, México; Licenciatura en Biomedicina Ambiental Traslacional, Universidad Autónoma de Nayarit, Circuito C. Ney M. González, Ciudad del conocimiento, 63173 Tepic, Nay. México.
S. Typhimurium bacteria cause one of the most recurrent gastrointestinal diseases worldwide. This bacterium can settle in the gastrointestinal tract and internalize into different cellular strains, causing the formation of cellular reservoirs that subsequently lead to systemic dissemination.
View Article and Find Full Text PDFFood Chem
January 2025
College of Life Science and Technology, Xinjiang University, Urumqi 830046, China. Electronic address:
This study evaluated the in vitro antioxidant activity and bioactive compound content of mixed-strain lactic acid bacteria-fermented black mulberry juice (FBMJ) and its protective effects against oxidative stress using physicochemical experiments and a cellular oxidative stress model. We also performed preliminary analyses of polysaccharide structures in FBMJ and identified the dynamic changes in the phenolic profiles of FBMJ during the fermentation process. The results indicated that FBMJ polyphenols can improve cell vitality and prevent HO-induced oxidative stress by reducing intracellular reactive oxygen species concentrations and regulating mitochondrial membrane potential.
View Article and Find Full Text PDFJ Colloid Interface Sci
January 2025
Shaanxi Key Laboratory of Chemical Additives for Industry, College of Chemistry and Chemical Engineering, Shaanxi University of Science and Technology, Xi'an 710021, China. Electronic address:
As smart electronic devices proliferate rapidly, concerns about electromagnetic radiation have become more prominent. Traditional electromagnetic shielding materials typically use three-dimensional porous foams, carbon structures, and film materials as their substrates. However, as electronic devices become more miniaturized, integrated, and precise, the large volume and limited functionality of foam materials have constrained their applications.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!