Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 144
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 144
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 212
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3106
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
The pathogenesis of atopic dermatitis (AD) is not yet fully understood, but the bacterial composition of AD patients' skin has been shown to have an increased abundance of . More recently, coagulase-negative (CoNS) species were shown to be able to inhibit , but further studies are required to determine the effects of community variation in AD. Here we investigated whether analysing metabarcoding data with the more recently developed DADA2 approach improves metabarcoding analyses compared to the previously used operational taxonomic unit (OTU) clustering, and can be used to study community dynamics. The bacterial 16S rRNA region from tape strip samples of the stratum corneum of AD patients (non-lesional skin) and non-AD controls was metabarcoded. We processed metabarcoding data with two different bioinformatic pipelines (an OTU clustering method and DADA2), which were analysed with and without technical replication (sampling strategy). We found that OTU clustering and DADA2 performed well for community-level studies, as demonstrated by the identification of significant differences in the skin bacterial communities associated with AD. However, the OTU clustering approach inflated bacterial richness, which was worsened by not having technical replication. Data processed with DADA2 likely handled sequencing errors more effectively and thereby did not inflate molecular richness. We believe that DADA2 represents an improvement over an OTU clustering approach, and that biological replication rather than technical replication is a more effective use of resources. However, neither OTU clustering nor DADA2 gave insights into community dynamics, and caution should remain in not overinterpreting the taxonomic assignments at lower taxonomic ranks.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7717693 | PMC |
http://dx.doi.org/10.1099/jmm.0.001256 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!