A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Toward Developing Discriminating Dissolution Methods for Formulations Containing Nanoparticulates in Solution: The Impact of Particle Drift and Drug Activity in Solution. | LitMetric

Enabling formulations are an attractive approach to increase the dissolution rate, solubility, and oral bioavailability of poorly soluble compounds. With the growing prevalence of poorly soluble drug compounds in the pharmaceutical pipeline, supersaturating drug delivery systems (SDDS), a subset of enabling formulations, have grown in popularity due to their properties allowing for drug concentrations greater than the corresponding crystalline solubility. However, the extent of supersaturation generated as the enabling formulation traverses the gastrointestinal (GI) tract is dynamic and poorly understood. The dynamic nature of supersaturation is a result of several competing kinetic processes such as dissolution, solubilization by formulation and endogenous surfactants, crystallization, and absorption. Ultimately, the free drug concentration, which is equivalent to the drug's inherent thermodynamic activity amid these kinetic processes, defines the true driving force for drug absorption. However, in cases where solubilizing agents are present (i.e., surfactants and bile salts), drug molecules may associate with colloidal nanoscale species, complicating drug activity determination. These nanoscale species can drift into the aqueous boundary layer (ABL), increasing the local API activity at the membrane surface, resulting in increased bioavailability. Herein, a novel approach was developed to accurately measure thermodynamic drug activity in complex media containing drug distributed in nanoparticulate species. This approach captures the influence of the ABL on the observed flux and, ultimately, the predicted unbound drug concentration. The results demonstrate that this approach can help to (1) measure the true extent of local supersaturation in complex systems containing solubilizing excipients and (2) elucidate the mechanisms by which colloidal aggregates can modulate the drug activity in solution and potentially enhance the flux observed across a membrane. The utilization of these techniques may provide development scientists with a strategy to evaluate formulation sensitivity to nanospeciation and allow formulators to maximize the driving force for absorption in a complex environment, perhaps enabling the development of dissolution methods with greater discrimination and correlation to pre-clinical and clinical data sets.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.molpharmaceut.0c00599DOI Listing

Publication Analysis

Top Keywords

drug activity
16
drug
12
dissolution methods
8
activity solution
8
enabling formulations
8
kinetic processes
8
drug concentration
8
driving force
8
nanoscale species
8
activity
6

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!