Microbial electrolysis cells (MECs) is one of the promising biohydrogen production technologies for which low-cost cathode materials are required and developed to propel the rapid development of MECs. Herein, the preparation of a low-cost Ce -Ni-Y composite is reported by using Y zeolite as carrier loaded with nickel (Ni) and cerium (Ce) as active components and its prominent electrochemical performance. The XPS analysis reveals that strong electronic interaction between Ni and Ce makes a great contribution to the electrochemical performance enhancement. The Ce -Ni-Y with a peak current density of 39.8 A⋅m in LSV, Tafel slope of 40.81 mV⋅dec , ECSA of 34.3 and hydrogen yield of 0.312±0.013 m ⋅m  d are significantly superior to that of its parent Ni-Y counterpart and rival the performance of commercially Pt/C, which renders it a very promising hydrogen evolution catalyst for MECs.

Download full-text PDF

Source
http://dx.doi.org/10.1002/cplu.202000492DOI Listing

Publication Analysis

Top Keywords

biohydrogen production
8
microbial electrolysis
8
electrolysis cells
8
electrochemical performance
8
nickel- cerium-doped
4
cerium-doped zeolite
4
zeolite composite
4
composite affordable
4
affordable cathode
4
cathode material
4

Similar Publications

The global shift towards renewable energy sources highlights the urgent need for sustainable hydrogen production, with photo-fermentative hydrogen evolution (PFHP) emerging as a promising solution. This review addresses the challenges and opportunities in optimizing PFHP, specifically the role of photosynthetic bacteria (PBS) in utilizing sunlight for hydrogen production. We focus on the key factors influencing PFHP, including light intensity, reactor design, substrate selection, carbon-to-nitrogen ratio, metal ions, temperature, pH, charge transfer and genetic engineering.

View Article and Find Full Text PDF

Valorization of mixed blackwater/agricultural wastes for bioelectricity and biohydrogen production: A microbial treatment pathway.

Heliyon

January 2025

African Centre of Excellence in Future Energies and Electrochemical Systems (ACE-FUELS), Federal University of Technology, Owerri, PMB 1526, Imo State, Nigeria.

The management of wastewater and agricultural wastes has been limited by the separate treatment processes, which exacerbate pollution and contribute to climate change through greenhouse gas emissions. Given the energy demands and financial burdens of traditional treatment facilities, there is a pressing need for technologies that can concurrently treat solid waste and generate energy. This study aimed to evaluate the feasibility of producing bioelectricity and biohydrogen through the microbial treatment of blackwater and agricultural waste using a dual-chamber Microbial Fuel Cell (MFC).

View Article and Find Full Text PDF

Batch and semi-continuous fermentation with Parageobacillus thermoglucosidasius DSM 6285 for H production.

Biotechnol Biofuels Bioprod

January 2025

Section II: Electrobiotechnology, Institute of Process Engineering in Life Science, Karlsruhe Institute of Technology, 76131, Karlsruhe, Germany.

Background: Parageobacillus thermoglucosidasius is a facultatively anaerobic thermophile that is able to produce hydrogen (H) gas from the oxidation of carbon monoxide through the water-gas shift reaction when grown under anaerobic conditions. The water-gas shift (WGS) reaction is driven by a carbon monoxide dehydrogenase-hydrogenase enzyme complex. Previous experiments exploring hydrogenogenesis with P.

View Article and Find Full Text PDF

A comparative evaluation of dark fermentative bioreactor configurations for enhanced hydrogen production.

Environ Sci Pollut Res Int

January 2025

Viona Consulting Inc, Agro-Environmental Innovation and Technology, Research and Development Company, Thornhill, ON, L3T 0C6, Canada.

Energy from renewable resources has been growing in popularity, which ultimately helps reduce emissions of greenhouse gases (GHGs) and contaminants. Since hydrogen (H) has a higher combustion production of energy than hydrocarbon fuels, it has been identified as a clean, sustainable, and environmentally friendly energy source. There are several benefits to producing biohydrogen (bioH) from renewable sources, including lower cost and increased sustainability.

View Article and Find Full Text PDF

Biohydrogen fermentation from pretreated biomass in lignocellulose biorefinery: Effects of inhibitory byproducts and recent progress in mitigation strategies.

Biotechnol Adv

December 2024

State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, Heilongjiang 150090, China. Electronic address:

Lignocellulosic biomass (LCB) is expected to play a critical role in achieving the goal of biomass-to-bioenergy conversion because of its wide distribution and low price. Biomass fermentation is a promising method for the sustainable generation of biohydrogen (bioH) from the renewable feedstock. Due to the inherent resistant structure of biomass, LCB needs to be pretreated to improve its digestibility and utilization.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!