Kane Basin (KB) is one of the world's most northerly polar bear (Ursus maritimus) subpopulations, where bears have historically inhabited a mix of thick multiyear and annual sea ice year-round. Currently, KB is transitioning to a seasonally ice-free region because of climate change. This ecological shift has been hypothesized to benefit polar bears in the near-term due to thinner ice with increased biological production, although this has not been demonstrated empirically. We assess sea-ice changes in KB together with changes in polar bear movements, seasonal ranges, body condition, and reproductive metrics obtained from capture-recapture (physical and genetic) and satellite telemetry studies during two study periods (1993-1997 and 2012-2016). The annual cycle of sea-ice habitat in KB shifted from a year-round ice platform (~50% coverage in summer) in the 1990s to nearly complete melt-out in summer (<5% coverage) in the 2010s. The mean duration between sea-ice retreat and advance increased from 109 to 160 days (p = .004). Between the 1990s and 2010s, adult female (AF) seasonal ranges more than doubled in spring and summer and were significantly larger in all months. Body condition scores improved for all ages and both sexes. Mean litter sizes of cubs-of-the-year (C0s) and yearlings (C1s), and the number of C1s per AF, did not change between decades. The date of spring sea-ice retreat in the previous year was positively correlated with C1 litter size, suggesting smaller litters following years with earlier sea-ice breakup. Our study provides evidence for range expansion, improved body condition, and stable reproductive performance in the KB polar bear subpopulation. These changes, together with a likely increasing subpopulation abundance, may reflect the shift from thick, multiyear ice to thinner, seasonal ice with higher biological productivity. The duration of these benefits is unknown because, under unmitigated climate change, continued sea-ice loss is expected to eventually have negative demographic and ecological effects on all polar bears.

Download full-text PDF

Source
http://dx.doi.org/10.1111/gcb.15286DOI Listing

Publication Analysis

Top Keywords

polar bear
12
climate change
8
bear ursus
8
ursus maritimus
8
transient benefits
4
benefits climate
4
change high-arctic
4
polar
4
high-arctic polar
4
maritimus subpopulation
4

Similar Publications

Condensation and Synchronization in Aligning Chiral Active Matter.

Phys Rev Lett

December 2024

Center for Soft Condensed Matter Physics and Interdisciplinary Research, Soochow University, Suzhou 215006, China.

We show that spontaneous density segregation in dense systems of aligning circle swimmers is a condensation phenomenon at odds with the phase separation scenarios usually observed in two-dimensional active matter. The condensates, which take the form of vortices or rotating polar packets, can absorb a finite fraction of the particles in the system, and keep a finite or slowly growing size as their mass increases. Our results are obtained both at particle and continuous levels.

View Article and Find Full Text PDF

Three-quarters of the planet's land surface has been altered by humans, with consequences for animal ecology, movements and related ecosystem functioning. Species often occupy wide geographical ranges with contrasting human disturbance and environmental conditions, yet, limited data availability across species' ranges has constrained our understanding of how human pressure and resource availability jointly shape intraspecific variation of animal space use. Leveraging a unique dataset of 758 annual GPS movement trajectories from 375 brown bears (Ursus arctos) across the species' range in Europe, we investigated the effects of human pressure (i.

View Article and Find Full Text PDF

Hibernating brown bears, due to a drastic reduction in metabolic rate, show only moderate muscle wasting. Here, we evaluate if ATPase activity of resting skeletal muscle myosin can contribute to this energy sparing. By analyzing single muscle fibers taken from the same bears, either during hibernation or in summer, we find that fibers from hibernating bears have a mild decline in force production and a significant reduction in ATPase activity.

View Article and Find Full Text PDF

Efficacy of azithromycin combined with compounded atovaquone in treating babesiosis in giant pandas.

Parasit Vectors

December 2024

Sichuan Key Laboratory of Conservation Biology for Endangered Wildlife, Chengdu Research Base of Giant Panda Breeding, Chengdu, 610000, Sichuan, China.

Background: Babesia is a tick-borne protozoan blood parasite that can cause hemolytic anemia, thrombocytopenia, lethargy and splenomegaly in giant pandas.

Methods: We evaluated the efficacy and safety profile of a therapeutic regimen combining atovaquone and zithromycin in the context of babesiosis in giant pandas that have been naturally infected. The examined pandas underwent clinical and laboratory analyses, including hematology, biochemistry and thyroid hormone profiles.

View Article and Find Full Text PDF

EVIDENCE FOR ADRENAL DYSFUNCTION CONTRIBUTING TO PERACUTE MORTALITY SYNDROME IN RED PANDA ().

J Zoo Wildl Med

December 2024

Zoological Pathology Program, Department of Veterinary Clinical Medicine, College of Veterinary Medicine, University of Illinois, Brookfield, IL 60513, USA.

Red pandas () are endangered with extinction due to deforestation and habitat fragmentation. Reported causes of unexpected death in managed red pandas include kidney, liver, gastrointestinal, and cardiac disease. A previously undetailed syndrome, red panda peracute mortality syndrome, may be emerging, as red pandas have died unexpectedly, with no clear cause of death identified at necropsy.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!