The genome of Cleistogenes songorica provides a blueprint for functional dissection of dimorphic flower differentiation and drought adaptability.

Plant Biotechnol J

State Key Laboratory of Grassland Agro-ecosystems, Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural Affairs, Engineering Research Center of Grassland Industry, Ministry of Education, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, China.

Published: March 2021

Cleistogenes songorica (2n = 4x = 40) is a desert grass with a unique dimorphic flowering mechanism and an ability to survive extreme drought. Little is known about the genetics underlying drought tolerance and its reproductive adaptability. Here, we sequenced and assembled a high-quality chromosome-level C. songorica genome (contig N50 = 21.28 Mb). Complete assemblies of all telomeres, and of ten chromosomes were derived. C. songorica underwent a recent tetraploidization (~19 million years ago) and four major chromosomal rearrangements. Expanded genes were significantly enriched in fatty acid elongation, phenylpropanoid biosynthesis, starch and sucrose metabolism, and circadian rhythm pathways. By comparative transcriptomic analysis we found that conserved drought tolerance related genes were expanded. Transcription of CsMYB genes was associated with differential development of chasmogamous and cleistogamous flowers, as well as drought tolerance. Furthermore, we found that regulation modules encompassing miRNA, transcription factors and target genes are involved in dimorphic flower development, validated by overexpression of CsAP2_9 and its targeted miR172 in rice. Our findings enable further understanding of the mechanisms of drought tolerance and flowering in C. songorica, and provide new insights into the adaptability of native grass species in evolution, along with potential resources for trait improvement in agronomically important species.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7955882PMC
http://dx.doi.org/10.1111/pbi.13483DOI Listing

Publication Analysis

Top Keywords

drought tolerance
16
cleistogenes songorica
8
dimorphic flower
8
drought
6
songorica
5
genome cleistogenes
4
songorica blueprint
4
blueprint functional
4
functional dissection
4
dissection dimorphic
4

Similar Publications

Nuclear Factor Y (NF-Y) represents a group of transcription factors commonly present in higher eukaryotes, typically consisting of three subunits: NF-YA, NF-YB, and NF-YC. They play crucial roles in the embryonic development, photosynthesis, flowering, abiotic stress responses, and other essential processes in plants. To better understand the genome-wide NF-Y domain-containing proteins, the protein physicochemical properties, chromosomal localization, synteny, phylogenetic relationships, genomic structure, promoter -elements, and protein interaction network of NtNF-Ys in tobacco ( L.

View Article and Find Full Text PDF

Aquaporins are widely present in the plant kingdom and play important roles in plant response to abiotic adversity stresses such as water and temperature extremes. In this study, we investigated the regulatory role of NTPIP2;4 on drought tolerance in tobacco at physiological and transcriptional levels. In this experiment, we constructed an NtPIP2;4 overexpression vector and genetically transformed tobacco variety 'K326' to investigate the mechanism of NtPIP2;4 gene in regulating drought tolerance in tobacco at physiological and transcriptomic levels.

View Article and Find Full Text PDF

TaSnRK3.23B, a CBL-interacting protein kinase of wheat, confers drought stress tolerance by promoting ROS scavenging in Arabidopsis.

BMC Plant Biol

January 2025

Institute of Food Crops, Hubei Academy of Agricultural Sciences/Key Laboratory of Crop Molecular Breeding, Ministry of Agriculture and Rural Affairs/Hubei Key Laboratory of Food Crop Germplasm and Genetic Improvement, Wuhan, 430064, China.

Background: Sucrose non-fermenting-1-related protein kinases (SnRKs) have been implicated in plant growth and stress responses. Although SnRK3.23 is known to be involved in drought stress, the underlying mechanism of resistance differs between Arabidopsis and rice, and little is known about its function in wheat.

View Article and Find Full Text PDF

The TIFY Transcription Factor ZmJAZ13 Enhances Plant Tolerance to Drought and Salt Stress by Interacting with ZmbHLH161 and ZmA0A1D6GLB9.

Plant Sci

January 2025

Beijing Key Laboratory of Agricultural Genetic Resources and Biotechnology, Institute of Biotechnology, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China. Electronic address:

The JAZ protein family, serving as a key negative regulator in the jasmonic acid signaling pathway, interacts with transcription factors to play an essential role in plant growth, development, and stress responses. However, minimal research has focused on the role of JAZ transcription factors in regulating the growth, development, and stress responses of maize. In this study, we cloned the JAZ gene ZmJAZ13 from maize (Zea mays L.

View Article and Find Full Text PDF

Calcium-dependent protein kinases CPK3/4/6/11 and 27 respond to osmotic stress and activate SnRK2s in Arabidopsis.

Dev Cell

January 2025

Key Laboratory of Plant Carbon Capture, Shanghai Center for Plant Stress Biology, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai 200032, China; University of Chinese Academy of Sciences, Beijing 100049, China. Electronic address:

Drought and salinity are significant environmental threats that cause hyperosmotic stress in plants, which respond with a transient elevation of cytosolic Ca and activation of Snf1-related protein kinase 2s (SnRK2s) and downstream responses. The exact regulators decoding Ca signals to activate downstream responses remained unclear. Here, we show that the calcium-dependent protein kinases CPK3/4/6/11 and 27 respond to moderate osmotic stress and dehydration to activate SnRK2 phosphorylation in Arabidopsis.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!