Identification of single-nucleotide variants (SNVs) is of great significance in molecular diagnosis. The problem that should not be ignored in the identification process is that the unexpected secondary structure of the target nucleic acid may greatly affect the detection accuracy. Herein, we proposed a conditional domain-level SNV diagnosis strategy, in which the subsequent SNV detection can only be carried out after eliminating the unexpected secondary structure of target DNA. Specifically, the target DNA is assembled into a rigid double strand, which makes folding the target DNA difficult and the unexpected secondary structure is eliminated. Based on this double-stranded structure, specially designed probes are used to detect double-stranded properties and report abundant domain-level oligonucleotide information to improve the effective information in the detection results and complete domain-level SNV diagnosis. If the unexpected secondary structure is not eliminated, the detector will first detect it and feed back to us, ensuring the accuracy of the subsequent detection results. With the occurrence (or not) of SNV and the change of the SNV site, in the proof-of-concept experiment, we successfully identified the four homologous sequences to be tested related to BRAF gene.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/chem.202003592 | DOI Listing |
Clin Imaging
December 2024
Department of Radiology, Hospital Sirio-Libanes, Rua Adma Jafet, 91, Sao Paulo, SP 01308-050, Brazil.
Epilepsia
January 2025
Division of Pediatric Neurology and Developmental Medicine, Department of Pediatrics, Duke University, Durham, North Carolina, USA.
Objective: This study was undertaken to test the following hypotheses in the Atp1a3 mouse (which carries the most common human ATP1A3 (the major subunit of the neuronal Na/K-adenosine triphosphatase [ATPase]) mutation, D801N): sudden unexpected death in epilepsy (SUDEP) occurs during seizures and is due to terminal apneas in some and due to lethal cardiac arrhythmias in others; and Atp1a3 mice have central cardiorespiratory dysregulation and abnormal respiratory drive.
Methods: Comparison was made of littermate wild-type and Atp1a3 groups using (1) simultaneous in vivo video-telemetry recordings of electroencephalogram, electrocardiogram, and breathing; (2) whole-body plethysmography; and (3) hypoglossal nerve recordings.
Results: In Atp1a3 mice, (1) SUDEP consistently occurred during seizures that were more severe than preterminal seizures; (2) seizure clustering occurred in periods preceding SUDEP; (3) slowing of breathing rate (BR) and heart rate was observed preictally before preterminal and terminal seizures; and (4) the sequence during terminal seizures was as follows: bradypnea with bradycardia/cardiac arrhythmias, then terminal apnea, followed by terminal cardiac arrhythmias.
Nat Microbiol
January 2025
Program in Emerging Infectious Diseases, Duke-NUS Medical School, Singapore, Singapore.
T cells have been identified as correlates of protection in viral infections. However, the level of vaccine-induced T cells needed and the extent to which they alone can control acute viral infection in humans remain uncertain. Here we conducted a double-blind, randomized controlled trial involving vaccination and challenge in 33 adult human volunteers, using the live-attenuated yellow fever (YF17D) and chimeric Japanese encephalitis-YF17D (JE/YF17D) vaccines.
View Article and Find Full Text PDFClin Colorectal Cancer
December 2024
Austin Hospital, Heidelberg, Victoria, Australia.
Background: Panitumumab (pan) plus chemotherapy is a preferred first-line therapy for unresectable RAS and BRAF wild type metastatic colorectal cancer (mCRC). Older patients may not be suitable for combination regimens. We investigated 2 lower intensity pan-containing regimens.
View Article and Find Full Text PDFBiomolecules
December 2024
Institut de Chimie Physique, CNRS-UMR8000, Université Paris-Saclay, 91405 Orsay, France.
There is compelling evidence that the absorption of low-energy UV radiation directly by DNA in solution generates guanine radicals with quantum yields that are strongly dependent on the secondary structure. Key players in this unexpected phenomenon are the photo-induced charge transfer () states, in which an electric charge has been transferred from one nucleobase to another. The present work examines the factors affecting the population of these states during electronic relaxation.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!