Long-term disability after stroke is common but the mechanisms of post-stroke recovery remain unclear. Cerebral Ras-related C3 botulinum toxin substrate (Rac) 1 contributes to functional recovery after ischemic stroke in mice. As Rac1 plays divergent roles in individual cell types after central neural system injury, we herein examined the specific role of neuronal Rac1 in post-stroke recovery and axonal regeneration. Young male mice were subjected to 60-min of middle cerebral artery occlusion (MCAO). Inducible deletion of neuronal Rac1 by daily intraperitoneal injection of tamoxifen (2 mg/40 g) into Thy1-creER/Rac1-floxed mice day 7-11 after MCAO worsened cognitive (assayed by novel object recognition test) and sensorimotor (assayed by adhesive removal and pellet reaching tests) recovery day 14-28 accompanied with the reduction of neurofilament-L (NFL) and myelin basic protein (MBP) and the elevation of glial fibrillary acidic protein (GFAP) in the peri-infarct zone assessed by immunostaining. Whereas the brain tissue loss was not altered assayed by cresyl violet staining. In another approach, delayed overexpression of neuronal Rac1 by injection of lentivirus encoding Rac1 with neuronal promotor into both the cortex and striatum (total 4 μl at 1 × 10 transducing units/mL) of stroke side in C57BL/6J mice day 7 promoted stroke outcome, NFL and MBP regrowth and alleviated GFAP invasion. Furthermore, neuronal Rac1 over-expression led to the activation of p21 activating kinases (PAK) 1, mitogen-activated protein kinase kinase (MEK) 1/2 and extracellular signal-regulated kinase (ERK) 1/2, and the elevation of brain-derived neurotrophic factor (BDNF) day 14 after stroke. Finally, we observed higher counts of neuronal Rac1 in the peri-infarct zone of subacute/old ischemic stroke subjects. This work identified a neuronal Rac1 signaling in improving functional recovery and axonal regeneration after stroke, suggesting a potential therapeutic target in the recovery stage of stroke.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7982352PMC
http://dx.doi.org/10.1111/jnc.15195DOI Listing

Publication Analysis

Top Keywords

neuronal rac1
24
post-stroke recovery
12
recovery axonal
12
rac1
9
ras-related botulinum
8
botulinum toxin
8
toxin substrate
8
stroke
8
functional recovery
8
ischemic stroke
8

Similar Publications

Excitatory synapses and the actin-rich dendritic spines on which they reside are indispensable for information processing and storage in the brain. In the adult hippocampus, excitatory synapses must balance plasticity and stability to support learning and memory. However, the mechanisms governing this balance remain poorly understood.

View Article and Find Full Text PDF

During development, Shh attracts axons of spinal cord commissural neurons to the floor plate. Shh-mediated attraction of commissural axons requires the receptor Boc. How Boc regulates cytoskeletal changes in growth cones in response to Shh is not fully understood.

View Article and Find Full Text PDF

Rlip76 in ageing and Alzheimer's disease: Focus on oxidative stress and mitochondrial mechanisms.

Ageing Res Rev

January 2025

Department of Internal Medicine, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA; Nutritional Sciences Department, College of Human Sciences, Texas Tech University, Lubbock, TX 79409, United States; Department of Pharmacology and Neuroscience, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA; Department of Neurology, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA 5. Department of Public Health, Graduate School of Biomedical Sciences, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA; Department of Speech, Language, and Hearing Sciences, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA. Electronic address:

Article Synopsis
  • * The protein is crucial for various physiological processes, including oxidative stress response and mitochondrial function, and its interaction with Alzheimer's disease proteins suggests a link to neurological health issues like oxidative stress and cognitive decline.
  • * Research involving Rlip in animal models of Alzheimer's disease reveals that altering its levels can lead to significant mitochondrial and cognitive impairments, indicating its potential as a therapeutic target in Alzheimer's progression and treatment.
View Article and Find Full Text PDF

Spatial and planar profiling of Rac1/Cdc42 signaling in Alzheimer's disease brain.

J Alzheimers Dis

December 2024

Department of Anatomy and Cell Biology, Brody School of Medicine, East Carolina University, Greenville, NC, USA.

Article Synopsis
  • - The study focuses on the dysregulation of small GTPases Rac1 and Cdc42 in Alzheimer's disease (AD), which are important for maintaining synaptic structures and could be potential therapeutic targets.
  • - Researchers used specific antibodies to assess the activity levels of Rac1/Cdc42 and their downstream effects in brains from a triple transgenic mouse model and human AD samples.
  • - Results showed that Rac1/Cdc42 activity changes vary across different regions of the brain, with decreased activity in certain areas of AD-affected mice and variations also noted in human AD samples, indicating a complex relationship with the disease's progression.
View Article and Find Full Text PDF

β-PIX, a Rac1/Cdc42-specific guanine nucleotide exchange factor, is known to regulate actin cytoskeleton remodeling during cell migration. In this study, we investigated the effects of β-PIX-d, an isoform of β-PIX, on neocortical development and neuritogenesis. Overexpression of β-PIX-d in the embryonic neocortex induced increased cell clusters and enhanced neurite outgrowth in cortical neurons.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!