A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Micronutrient Fertilization of Greenhouse Cucumbers Mitigates Pirimicarb Resistance in Aphis gossypii (Hemiptera: Aphididae). | LitMetric

The nutritional status of host plants can have direct impacts on herbivore physiology and insect-plant interactions. We investigated the effect of micronutrients, including manganese, iron, zinc, and copper, on cucumber plant physiology, and on the biology and physiology of a strain of Aphis gossypii Glover selected over 12 generations to be resistant to pirimicarb. The micronutrient treatment increased the activity of superoxide dismutase, ascorbate peroxidase, guaiacol peroxidase, polyphenol oxidase, and phenylalanine ammonia-lyase in cucumber plants, and also increased levels of total phenolics, hydrogen peroxide, salicylic acid, and total chlorophyl, whereas malondialdehyde levels were unaffected. Pirimicarb-resistant cotton aphids that fed on micronutritient-amended cucumber plants expressed significantly decreased levels of acetylcholinesterase and detoxifying enzymes, specifically glutathione S-transferase, and carboxylesterase. Analysis of energy reserves in resistant A. gossypii fed on micronutritient-amended plants revealed decreases in the lipid and protein contents of aphids, whereas glycogen and carbohydrate contents showed no response. Resistant cotton aphids fed on micronutritient-amended plants showed significantly reduced fecundity, longevity, and reproductive periods, and a 1.7-fold reduction in pirimicarb LC50 compared with those fed on control plants. We conclude that micronutrient amendment negatively impacts the biological performance of insecticide-resistant cotton aphids, and diminishes their resistance to pirimicarb. Both direct effects on plant health, such as enhanced inducible defenses, and indirect effects on aphid fitness, such as reduced biological performance and detoxification abilities, were implicated. Therefore, optimization of micronutrient amendments could be a useful complement to other tactics for managing insecticide-resistant A. gossypii on cucumbers, and warrants exploration in other contexts.

Download full-text PDF

Source
http://dx.doi.org/10.1093/jee/toaa202DOI Listing

Publication Analysis

Top Keywords

cotton aphids
12
fed micronutritient-amended
12
aphis gossypii
8
cucumber plants
8
aphids fed
8
micronutritient-amended plants
8
biological performance
8
plants
6
micronutrient
4
micronutrient fertilization
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!