Farm data analysis for lifetime performance components of sows and their predictors in breeding herds.

Porcine Health Manag

School of Agriculture, Meiji University, Higashi-mita 1-1-1, Tama-ku, Kawasaki, Kanagawa 214-8571 Japan.

Published: September 2020

Our objectives in this review are 1) to define the four components of sow lifetime performance, 2) to organize the four components and other key measures in a lifetime performance tree, and 3) to compile information about sow and herd-level predictors for sow lifetime performance that can help producers or veterinarians improve their decision making. First, we defined the four components of sow lifetime performance: lifetime efficiency, sow longevity, fertility and prolificacy. We propose that lifetime efficiency should be measured as annualized piglets weaned or annualized piglets born alive which is an integrated measure for sow lifetime performance, whereas longevity should be measured as sow life days and herd-life days which are the number of days from birth to removal and the number of days from date of first-mating to removal, respectively. We also propose that fertility should be measured as lifetime non-productive days, whereas prolificacy should be measured as lifetime pigs born alive. Second, we propose two lifetime performance trees for annualized piglets weaned and annualized piglets born alive, respectively, and show inter-relationships between the four components of the lifetime performance in these trees. Third, we describe sow and herd-level predictors for high lifetime performance of sows. An example of a sow-level predictor is that gilts with lower age at first-mating are associated with higher lifetime performance in all four components. Other examples are that no re-service in parity 0 and shorter weaning-to-first-mating interval in parity 1 are associated with higher fertility, whereas more piglets born in parity 1 is associated with higher prolificacy. It appears that fertility and prolificacy are independent each other. Furthermore, sows with high prolificacy and high fertility are more likely to have high longevity and high efficiency. Also, an increased number of stillborn piglets indicates that sows have farrowing difficulty or a herd health problem. Regarding herd-level predictors, large herd size is associated with higher efficiency. Also, herd-level predictors can interact with sow level predictors for sow lifetime performance. For example, sow longevity decreases more in large herds than small-to-mid herds, whereas gilt age at first-mating increases. So, it appears that herd size alters the impact of delayed gilt age at first-mating on sow longevity. Increased knowledge of these four components of sow lifetime performance and their predictors should help producers and veterinarians maximize a sow's potential and optimize her lifetime productivity in breeding herds.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7499956PMC
http://dx.doi.org/10.1186/s40813-020-00163-1DOI Listing

Publication Analysis

Top Keywords

lifetime performance
48
sow lifetime
24
lifetime
17
herd-level predictors
16
annualized piglets
16
associated higher
16
sow
13
performance
12
components sow
12
sow longevity
12

Similar Publications

Importance: Cannabis use has increased globally, but its effects on brain function are not fully known, highlighting the need to better determine recent and long-term brain activation outcomes of cannabis use.

Objective: To examine the association of lifetime history of heavy cannabis use and recent cannabis use with brain activation across a range of brain functions in a large sample of young adults in the US.

Design, Setting, And Participants: This cross-sectional study used data (2017 release) from the Human Connectome Project (collected between August 2012 and 2015).

View Article and Find Full Text PDF

Zn(TFSI)-Mediated Ring-Opening Polymerization for Electrolyte Engineering Toward Stable Aqueous Zinc Metal Batteries.

Nanomicro Lett

January 2025

Department of Chemistry and Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Institute of New Energy, iChEM (Collaborative Innovation Center of Chemistry for Energy Materials), Fudan University, Shanghai, 200433, People's Republic of China.

Practical Zn metal batteries have been hindered by several challenges, including Zn dendrite growth, undesirable side reactions, and unstable electrode/electrolyte interface. These issues are particularly more serious in low-concentration electrolytes. Herein, we design a Zn salt-mediated electrolyte with in situ ring-opening polymerization of the small molecule organic solvent.

View Article and Find Full Text PDF

Halide perovskites, a game changer for future medical imaging technology.

Biophys Rev (Melville)

March 2025

School of Physics, Australian Centre for Microscopy and Microanalysis, Sydney Nano Institute, The University of Sydney, Sydney, NSW 2006, Australia.

The accurate detection of x-rays enables broad applications in various fields, including medical radiography, safety and security screening, and nondestructive inspection. Medical imaging procedures require the x-ray detection devices operating with low doses and high efficiency to reduce radiation health risks, as well as expect the flexible or wearable ones that offer more comfortable and accurate diagnosis experiences. Recently, halide perovskites have shown promising potential in high-performance, cost-effective x-ray detection owing to their attractive features, such as strong x-ray absorption, high-mobility-lifetime product, tunable bandgap, fast response, as well as low-cost raw materials, facile processing, and excellent flexibility.

View Article and Find Full Text PDF

Background And Aims: Current gastric cancer (GC) screening modalities are invasive and expensive. Noninvasive screening for GC precursors with serum pepsinogen (PG) may improve early detection and prevention. Test characteristics of PG based on US prospective data was recently reported and used to study the cost-effectiveness of PG screening vs no screening in the US.

View Article and Find Full Text PDF

The cellular uptake routes of peptides and proteins are complex and diverse, often handicapping therapeutic success. Understanding their mechanisms of internalization requires chemical derivatization with approaches that are compatible with wash-free and real-time imaging. In this work, we developed a new late-stage labeling strategy for unprotected peptides and proteins, which retains their biological activity while enabling live-cell imaging of uptake and intracellular trafficking.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!