Background: To establish and validate a radiomics-based model for predicting liver cirrhosis in patients with hepatitis B virus (HBV) by using non-contrast computed tomography (CT).
Methods: This retrospective study developed a radiomics-based model in a training cohort of 144 HBV-infected patients. Radiomic features were extracted from abdominal non-contrast CT scans. Features selection was performed with the least absolute shrinkage and operator (LASSO) method based on highly reproducible features. Support vector machine (SVM) was adopted to build a radiomics signature. Multivariate logistic regression analysis was used to establish a radiomics-based nomogram that integrated radiomics signature and other independent clinical predictors. Performance of models was evaluated through discrimination ability, calibration and clinical benefits. An internal validation was conducted in 150 consecutive patients.
Results: The radiomics signature comprised 25 cirrhosis-related features and showed significant differences between cirrhosis and non-cirrhosis cohorts ( < 0.001). A radiomics-based nomogram that integrates radiomics signature, alanine transaminase, aspartate aminotransferase, globulin and international normalized ratio showed great calibration and discrimination ability in the training cohort (area under the curve [AUC]: 0.915) and the validation cohort (AUC: 0.872). Decision curve analysis confirmed the most clinical benefits can be provided by the nomogram compared with other methods.
Conclusions: Our developed radiomics-based nomogram can successfully diagnose the status of cirrhosis in HBV-infected patients, that may help clinical decision-making.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7499912 | PMC |
http://dx.doi.org/10.1186/s40364-020-00219-y | DOI Listing |
Insights Imaging
January 2025
Medical Research Department, Qingdao Hospital, University of Health and Rehabilitation Sciences (Qingdao Municipal Hospital), Qingdao, P. R. China.
Objective: To develop an automatic segmentation model to delineate the adnexal masses and construct a machine learning model to differentiate between low malignant risk and intermediate-high malignant risk of adnexal masses based on ovarian-adnexal reporting and data system (O-RADS).
Methods: A total of 663 ultrasound images of adnexal mass were collected and divided into two sets according to experienced radiologists: a low malignant risk set (n = 446) and an intermediate-high malignant risk set (n = 217). Deep learning segmentation models were trained and selected to automatically segment adnexal masses.
Acad Radiol
January 2025
Department of Urology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China (Y.X., B.X., Z.W., C.P., M.X.). Electronic address:
Rationale And Objectives: To develop and externally validate interpretable CT radiomics-based machine learning (ML) models for preoperative Ki-67 expression prediction in clear cell renal cell carcinoma (ccRCC).
Methods: 506 patients were retrospectively enrolled from three independent institutes and divided into the training (n=357) and external test (n=149) sets. Ki67 expression was determined by immunohistochemistry (IHC) and categorized into low (<15%) and high (≥15%) expression groups.
Clin Transl Gastroenterol
December 2024
Department of Radiation Oncology, Wake Forest University School of Medicine, Winston-Salem, NC 27157, USA.
Introduction: Gastric cancer (GC) is a leading cause of cancer-related deaths worldwide, with delayed diagnosis often limiting effective treatment options. This study introduces a novel, non-invasive radiomics-based approach utilizing [18F] FDG PET/CT to predict VEGF status and survival in GC patients. The ability to non-invasively assess these parameters can significantly influence therapeutic decisions and outcomes.
View Article and Find Full Text PDFInsights Imaging
January 2025
Department of Radiology, Yongchuan Hospital of Chongqing Medical University, Chongqing, China.
Objectives: To develop and validate the performance of CT-based radiomics models for predicting the prognosis of acute pancreatitis.
Methods: All 344 patients (51 ± 15 years, 171 men) in a first episode of acute pancreatitis (AP) were retrospectively enrolled and randomly divided into training (n = 206), validation (n = 69), and test (n = 69) sets with the ratio of 6:2:2. The patients were dichotomized into good and poor prognosis subgroups based on follow-up CT and clinical data.
Neurooncol Adv
December 2024
Division for Medical Image Computing (MIC), German Cancer Research Center (DKFZ), Heidelberg, Germany.
Background: This study aimed to explore the potential of the Advanced Data Analytics (ADA) package of GPT-4 to autonomously develop machine learning models (MLMs) for predicting glioma molecular types using radiomics from MRI.
Methods: Radiomic features were extracted from preoperative MRI of = 615 newly diagnosed glioma patients to predict glioma molecular types (IDH-wildtype vs IDH-mutant 1p19q-codeleted vs IDH-mutant 1p19q-non-codeleted) with a multiclass ML approach. Specifically, ADA was used to autonomously develop an ML pipeline and benchmark performance against an established handcrafted model using various MRI normalization methods (N4, Zscore, and WhiteStripe).
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!