Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Background And Objectives: Gap junctions play a pivotal role in contributing to the formation of astroglial networks and in chronic pain. However, the mechanisms underlying the dysfunction of astroglial gap junctions in chronic pain have not been fully elucidated.
Methods: Chronic constriction injury (CCI) of the sciatic nerve was used to establish rat neuropathic pain model. C6 cells were used to perform experiments in vitro. Von Frey hairs and Hargreave's method were used to determine the withdrawal threshold of rats. Protein expression was detected by immunofluorescence and western blotting.
Results: Astragaloside IV (AST IV) significantly attenuated neuropathic pain and suppressed the excitation of spinal astrocytes in rats with CCI. The antinociceptive effect of AST IV was reversed by the gap junction decoupler carbenoxolone (CBX). AST IV inhibited the high expression of phosphorylated connexin 43 (p-Cx43) and p-c-Jun N-terminal kinase (p-JNK) in spinal cord of rats with CCI. JNK inhibitor alleviated neuropathic pain, which was reversed by CBX. JNK inhibitor decreased the high expression of p-Cx43 in both rats with CCI and tumor necrosis factor-alpha (TNF-α)-treated C6 cells. Additionally, the analgesic effect of AST IV was reversed by the adenosine triphosphate-sensitive potassium (K) channel blocker, glibenclamide (Glib). Glib abolished the inhibitory effects of AST IV on p-JNK and p-Cx43 both in vivo and in vitro. K channel opener (KCO) mimicked the inhibitory effects of AST IV on p-JNK and p-Cx43 in TNF-α-treated C6 cells.
Conclusion: Our results indicate that the sciatic nerve CCI induces the dysfunction of gap junctions in the spinal cord by activating K/JNK signaling to contribute to neuropathic pain. AST IV attenuates neuropathic pain via regulating the K-JNK gap junction axis.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1136/rapm-2020-101411 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!