Estrogen signaling differentially alters iron metabolism in monocytes in an Interleukin 6-dependent manner.

Immunobiology

Sharjah Institute for Medical Research, University of Sharjah, United Arab Emirates; Department of Medical Laboratory Sciences, College of Health Sciences, University of Sharjah, United Arab Emirates. Electronic address:

Published: September 2020

The ability of monocytes to release or sequester iron affects their role in cancer and inflammation. Previous work has shown that while IL-6 upregulates hepcidin synthesis and enhances iron sequestration, E2 reduces hepcidin synthesis and increases iron release. Given that E2 upregulates IL-6 production in monocytes, it is likely that the exact effect of E2 on iron metabolism in monocytes is shaped by its effect on IL-6 expression. To address this issue, the expression of key iron regulatory proteins was assessed in E2-treated U937, HuT-78, THP-1 and Hep-G2 cells. Iron status was also evaluated in U937 cells treated with the ERα agonist PPT, the ER antagonist ICI-182780, dexamethasone + E2, IL-6 + E2 and in IL-6-silenced U937 cells. E2 treatment reduced hepcidin synthesis in HuT-78, THP-1 and Hep-G2 cells but increased hepcidin synthesis and reduced FPN expression in U937 cells. E2-treated U937 cells also showed reduced HIF-1α and FTH expression and increased TFR1 expression, which associated with increased labile iron content as compared with similarly treated Hep-G2 cells. While treatment of U937 cells with interleukin 6 (IL-6) resulted in increased expression of hepcidin, dexamethasone treatment resulted in reduced hepcidin synthesis relative to E2- or dexamethasone + E2-treated cells; IL-6 silencing also resulted in reduced hepcidin synthesis in U937 cells. Lastly, while iron depletion resulted in increased cell death in U937 cells, E2 treatment resulted in enhanced cell survival and reduced apoptosis. These findings suggest that E2 differentially alters iron metabolism in monocytes in an IL-6 dependent manner.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.imbio.2020.151995DOI Listing

Publication Analysis

Top Keywords

u937 cells
28
hepcidin synthesis
24
iron metabolism
12
metabolism monocytes
12
hep-g2 cells
12
cells treatment
12
reduced hepcidin
12
cells
11
iron
10
differentially alters
8

Similar Publications

Understanding the Molecular Mechanisms of Incomptine A in Treating Non-Hodgkin Lymphoma Associated with U-937 Cells: Bioinformatics Approaches, Part I.

Pharmaceuticals (Basel)

December 2024

Instituto Politécnico Nacional, Sección de Estudios de Posgrado e Investigación, Escuela Superior de Medicina, Plan de San Luis y Salvador Díaz Mirón S/N, Col. Casco de Santo Tomás, Miguel Hidalgo, Mexico City 11340, Mexico.

: Incomptine A () has been reported to have cytotoxic activity in non-Hodgkin lymphoma cancer cell lines and have effects on U-937 cells, including the induction of apoptosis, the production of reactive oxygen species, and the inhibition of glycolytic enzymes. Also, has cytotoxic activity in the triple-negative subtypes, HER2+, and luminal A of breast cancer cells, with its properties being associated with an effect on the antiapoptotic function of Hexokinase II (HKII). : In this research, we reviewed the altered levels of proteins present in the lymph nodes of male Balb/c mice inoculated with U-937 cells and treated with or methotrexate, as well as mice only inoculated with cancer cells.

View Article and Find Full Text PDF

Systemic lupus erythematosus (SLE), systemic sclerosis (SSc), and idiopathic inflammatory myositis (IIM) are autoimmune diseases managed with long-term immunosuppressive therapies. Hu19-CD828Z, a fully human anti-CD19 chimeric antigen receptor (CAR) with a CD28 costimulatory domain, is engineered to potently deplete B-cells. In this study, we manufactured Hu19-CD828Z CAR T-cells from peripheral blood of SLE, IIM, and SSc patients and healthy donors (HDs).

View Article and Find Full Text PDF

Background: Uncoupling protein 2 (UCP2) is essential for maintaining redox homeostasis and regulating energy metabolism. Abnormal expression of UCP2 has been associated with various tumors, including leukemia. Genipin (GEN), a specific inhibitor of UCP2, has a long history of use in traditional Chinese medicine.

View Article and Find Full Text PDF

Bi-targeting of thioredoxin 1 and telomerase by thiotert promotes cell death of myelodysplastic syndromes and lymphoma.

Biol Direct

January 2025

Department of Clinical Laboratory, Affiliated Hangzhou First People's Hospital, School of Medicine, Westlake University, Hangzhou, Zhejiang, China.

Thioredoxin1 (TRX1) and telomerase are both attractive oncology targets that are tightly implicated in tumor initiation and development. Here, we reported that the 6-dithio-2-deoxyguanosine analog thiotert exhibits an effective cytotoxic effect on myelodysplastic syndromes (MDS) cell SKM-1 and lymphoma cell U-937. Further studies confirmed that thiotert effectively disrupts cellular redox homeostasis, as evidenced by elevated intracellular reactive oxygen species (ROS) levels, increased MnSOD, accelerated DNA impairment, and activated apoptosis signal.

View Article and Find Full Text PDF

This study was designed to assess the effect of brentuximab vedotin on several breast cancer cell lines in terms of promoting apoptosis and managing cancer progression. Additionally, the study investigated the potential of repurposing this drug for new therapeutic reasons, beyond its original indications. The study evaluates the cytotoxic effects of Brentuximab vedotin across five cell lines: normal human skin fibroblasts (HSF), three breast cancer cell lines (MCF-7, MDA-MB-231, and T-47D), and histiocytic lymphoma (U-937).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!