Background: Nutrigenomics is an emerging science that studies the relationship between genes, diet and nutrients that can help prevent chronic disease. The development of this science depends on whether the public accept its application; therefore, predicting their intention to adopt it is important for its successful implementation.
Objective: This study aims to analyse Malaysian stakeholders' intentions to adopt nutrigenomics, and determines the factors that influence their intentions.
Methods: A survey was conducted based on the responses of 421 adults (aged 18 years and older) and comprising two stakeholder groups: healthcare providers (n = 221) and patients (n = 200) who were located in the Klang Valley, Malaysia. The SPSS software was used to analyse the descriptive statistics of intention to adopt nutrigenomics and the SmartPLS software was used to determine the predicting factors affecting their decisions to adopt nutrigenomics.
Results: The results show that the stakeholders perceived the benefits of nutrigenomics as outweighing its risks, suggesting that the perceived benefits represent the most important direct predictor of the intention to adopt nutrigenomics. The perceived risks of nutrigenomics, trust in key players, engagement with medical genetics and religiosity also predict the intention to adopt nutrigenomics. Additionally, the perceived benefits of nutrigenomics served as a mediator for four factors: perceived risks of nutrigenomics, engagement with medical genetics, trust in key players and religiosity, whilst the perceived risks were a mediator for engagement with medical genetics.
Conclusion: The findings of this study suggest that the intentions of Malaysian stakeholders to adopt nutrigenomics are a complex decision-making process where all the previously mentioned factors interact. Although the results showed that the stakeholders in Malaysia were highly positive towards nutrigenomics, they were also cautious about adopting it.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7509940 | PMC |
http://dx.doi.org/10.1186/s12263-020-00676-y | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!