Polarizable force fields based on classical Drude oscillators offer a practical and computationally efficient avenue to carry out molecular dynamics (MD) simulations of large biomolecular systems. To treat the polarizable electronic degrees of freedom, the Drude model introduces a virtual charged particle that is attached to its parent nucleus via a harmonic spring. Traditionally, the need to relax the electronic degrees of freedom for each fixed set of nuclear coordinates is achieved by performing an iterative self-consistent field (SCF) calculation to satisfy a selected tolerance. This is a computationally demanding procedure that can increase the computational cost of MD simulations by nearly one order of magnitude. To avoid the costly SCF procedure, a small mass is assigned to the Drude particles, which are then propagated as dynamic variables during the simulations via a dual-thermostat extended Lagrangian algorithm. To help clarify the significance of the dual-thermostat extended Lagrangian propagation in the context of the polarizable force field based on classical Drude oscillators, the statistical mechanics of a dual-temperature canonical ensemble is formulated. The conditions for dynamically maintaining the dual-temperature properties in the case of the classical Drude oscillator are analyzed using the generalized Langevin equation.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7656322PMC
http://dx.doi.org/10.1063/5.0019987DOI Listing

Publication Analysis

Top Keywords

classical drude
16
polarizable force
12
based classical
12
drude oscillators
12
dual-thermostat extended
12
extended lagrangian
12
statistical mechanics
8
force fields
8
fields based
8
electronic degrees
8

Similar Publications

Computationally Efficient Polarizable MD Simulations: A Simple Water Model for the Classical Drude Oscillator Polarizable Force Field.

J Phys Chem Lett

January 2025

University of Maryland Computer-Aided Drug Design Center, Department of Pharmaceutical Sciences, School of Pharmacy, University of Maryland, Baltimore, Maryland 21201, United States.

An improvement in the computational efficiency of polarizable force field simulations is made through the development of a polarizable Drude water model, SWM3, in combination with the use of Lennard-Jones Particle Mesh Ewald (LJPME) for the treatment of long-range LJ interactions. The experimental bulk properties, density, heat of vaporization, dielectric constant, and self-diffusion constant of the SWM3 model are accurately replicated at ambient condition. The temperature dependence of the bulk properties is also captured except for the density.

View Article and Find Full Text PDF
Article Synopsis
  • Molecular dynamics simulations are essential for understanding the behavior of biomolecules but often face challenges due to discrepancies in time scales compared to real-world experiments, prompting the development of enhanced methods.
  • This study utilizes advanced techniques like oscillating chemical potential grand canonical Monte Carlo and machine learning to investigate how electronic polarizability and Mg2+ distribution influence the stability of the twister ribozyme.
  • The findings highlight that incorporating electronic polarizability significantly improves simulation stability compared to traditional methods, revealing critical interactions between Mg2+ ions and RNA components that contribute to this stabilization.
View Article and Find Full Text PDF

Electron confinement-induced plasmonic breakdown in metals.

Sci Adv

November 2024

Chemistry and Physics of Materials Unit and International Centre for Materials Science, Jawaharlal Nehru Centre for Advanced Scientific Research, Bangalore 560064, India.

Plasmon resonance represents the collective oscillation of free electron gas density and enables enhanced light-matter interactions in nanoscale dimensions. Traditionally, the classical Drude model describes plasmonic excitation, wherein plasma frequency exhibits no spatial dispersion. Here, we show conclusive experimental evidence of the breakdown of plasmon resonance and a consequent metal-insulator transition in an ultrathin refractory plasmonic material, hafnium nitride (HfN).

View Article and Find Full Text PDF

Revised 4-Point Water Model for the Classical Drude Oscillator Polarizable Force Field: SWM4-HLJ.

J Chem Theory Comput

November 2024

University of Maryland Computer-Aided Drug Design Center, Department of Pharmaceutical Sciences, School of Pharmacy, University of Maryland, Baltimore, Maryland 21201, United States.

In this work the 4-point polarizable SWM4 Drude water model is reparametrized. Multiple models were developed using different strategies toward reproduction of specific target data. Results indicate that no individual model can reproduce all the selected target data in the context of the present form of the potential energy function.

View Article and Find Full Text PDF

Landau-Lifschitz Magnets: Exact Thermodynamics and Transport.

Phys Rev Lett

September 2024

Faculty of Mathematics and Physics, University of Ljubljana, Jadranska ulica 19, 1000 Ljubljana, Slovenia.

The classical Landau-Lifshitz equation-the simplest model of a ferromagnet-provides an archetypal example for studying transport phenomena. In one-spatial dimension, integrability enables the classification of linear and nonlinear mode spectrum. An exact characterization of finite-temperature thermodynamics and transport has nonetheless remained elusive.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!