Intrinsically Visible Light-Responsive Liquid Crystalline Physical Gels Driven by a Halogen Bond.

Langmuir

Key Laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education, Hubei Key Laboratory of Material Chemistry and Service Failure, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074, China.

Published: October 2020

Photoresponsive physical gels using liquid crystals (LCs) as solvents have attracted great interest owing to their potential applications. But, current investigations mainly focus on UV light, which is not environment-friendly enough. On the other hand, the halogen bond is a novel tool for constructing supramolecular gels because of good hydrophobicity, high directionality, tunable strength, and large size of halogen atoms. Herein, to construct an LC physical gel with both the advantages of a halogen bond and visible light response, azopyridine-containing Azopy-C is chosen as a halogen bond acceptor, while 1,2-bis(2,3,5,6-tetrafluoro-4-iodophenyl)diazene is selected both as the halogen bond donor and for the intrinsically visible light response. Such a binary gelator can self-assemble in the anisotropic solvent of nematic LC 5CB to form an LC physical gel. It experiences the gel-to-sol transition by green light irradiation. As the gelator concentration increases, the saturation voltage increases, but the switch-off time decreases. The combination of the halogen bond and controllable visible light-responsive LC physical gel provides the feasibilities of manipulating these smart soft materials.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.langmuir.0c01901DOI Listing

Publication Analysis

Top Keywords

halogen bond
24
physical gel
12
intrinsically visible
8
visible light-responsive
8
physical gels
8
visible light
8
light response
8
halogen
7
bond
6
physical
5

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!