Extracellular vesicles (EVs) have recently attracted a great deal of interest as they may represent a new biosignaling paradigm. According to the mode of biogenesis, size and composition, two broad categories of EVs have been described, exosomes and microvesicles. EVs have been shown to carry cargoes of signaling proteins, RNA species, DNA and lipids. Once released, their content is selectively taken up by near or distant target cells, influencing their behavior. Exosomes are involved in cell-cell communication in a wide range of embryonic developmental processes and in fetal-maternal communication. In the present review, an outline of the role of EVs in neural development, regeneration and diseases is presented. EVs can act as regulators of normal homeostasis, but they can also promote either neuroinflammation/degeneration or tissue repair in pathological conditions, depending on their content. Since EV molecular cargo constitutes a representation of the origin cell status, EVs can be exploited in the diagnosis of several diseases. Due to their capability to cross the blood-brain barrier (BBB), EVs not only have been suggested for the diagnosis of central nervous system disorders by means of minimally invasive procedures, i.e., "liquid biopsies", but they are also considered attractive tools for targeted drug delivery across the BBB. From the therapeutic perspective, mesenchymal stem cells (MSCs) represent one of the most promising sources of EVs. In particular, the neuroprotective properties of MSCs derived from the dental pulp are here discussed.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7555813 | PMC |
http://dx.doi.org/10.3390/ijms21186859 | DOI Listing |
Adv Sci (Weinh)
January 2025
School of Life Sciences, Chongqing University, Chongqing, 401331, China.
The diverse and dynamic population of microorganisms present in the gut microbiota may affect host health. There are evidences to support the role of gut microbiota as a key player in reproductive development. Unfortunately, the relationship between reproductive disorders caused by aging and gut microbiota remains largely unknown.
View Article and Find Full Text PDFCancer Res
January 2025
Oregon Health & Science University, Portland, OR, United States.
Senescence is a non-proliferative, survival state that cancer cells can enter to escape therapy. In addition to soluble factors, senescence cells secrete extracellular vesicles (EVs), which are important mediators of intercellular communication. To explore the role of senescent cell-derived EVs (senEVs) in inflammatory responses to senescence, we developed an engraftment-based senescence model in wild-type mice and genetically blocked senEV release in vivo, without significantly affecting soluble mediators.
View Article and Find Full Text PDFAdv Sci (Weinh)
January 2025
Department of Gastroenterology and Hepatology and Laboratory of Gastrointestinal Cancer and Liver Disease, West China Hospital, Sichuan University, Chengdu, 610041, China.
Skeletal muscle atrophy (sarcopenia) is a serious complication of liver cirrhosis, and chronic muscle inflammation plays a pivotal role in its pathologenesis. However, the detailed mechanism through which injured liver tissues mediate skeletal muscle inflammatory injury remains elusive. Here, it is reported that injured hepatocytes might secrete mtDNA-enriched extracellular vesicles (EVs) to trigger skeletal muscle inflammation by activating the cGAS-STING pathway.
View Article and Find Full Text PDFPLoS One
January 2025
Department of Regenerative Medicine, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran.
Exosomes are natural membrane-enclosed nanovesicles (30-150 nm) involved in cell-cell communication. Recently, they have garnered considerable interest as nanocarriers for the controlled transfer of therapeutic agents to cells. Here, exosomes were derived from bone marrow mesenchymal stem cells using three different isolation methods.
View Article and Find Full Text PDFMicrosc Microanal
January 2025
Cellular and Molecular Biotechnology Research Institute, Department of Life Science and Biotechnology, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba Central-6, 1-1-1 Higashi, Tsukuba, Ibaraki 305-8566, Japan.
There is still room for improvement in the isolation and purification techniques for extracellular vesicles (EVs), particularly in the separation of exosomes (small EVs) from other membrane vesicles such as microvesicles and apoptotic bodies. Furthermore, it is crucial to establish preparation methods that preserve the intrinsic properties of EVs in this context. In this study, we focus on the isolation and preparation of small EVs, exosomes, from the culture supernatant of a human cell line.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!