Ionic liquids represent a class of highly versatile organic compounds used extensively in the last decade for lignocellulose biomass fractionation and dissolution, as well as property modifiers for wood materials. This review is dedicated to the use of ionic liquids as antifungal agents for wood preservation. Wood preservation against fungal attack represents a relatively new domain of application for ionic liquids, emerging in the late 1990s. Comparing to other application domains of ionic liquids, this particular one has been relatively little researched. Ionic liquids may be promising as wood preservatives due to their ability to swell wood, which translates into better penetration ability and fixation into the bulk of the wood material than other conventional antifungal agents, avoiding leaching over time. The antifungal character of ionic liquids depends on the nature of their alkyl-substituted cation, on the size and position of their substituents, and of their anion. It pertains to a large variety of wood-colonizing fungi, both and .
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7570619 | PMC |
http://dx.doi.org/10.3390/molecules25184289 | DOI Listing |
Inorg Chem
December 2024
Institute of Inorganic Chemistry (IAC), Karlsruhe Institute of Technology (KIT), Engesserstraße 15, D-76131 Karlsruhe, Germany.
Crown-ether coordination compounds of europium(II/III) and the crown ether (CHO) (24-crown-8, 24c8) are prepared, aiming at novel compounds, structures, and coordination modes as well as potential luminescence properties. By reacting EuCl, EuI, or EuCl with 24c8 or its derivatives in ionic liquids, the novel compounds [BuMeN][Eu(II)(NTf)] (), [BMIm][EuI] (), [EuCl(dibenzo-18c6)] (), [EuI(dibenzo-24c8)] (), [(Eu(III)Cl)(CHO)](24c8) (), and [Eu(III)Cl(24c8)]I () are obtained (BMIm: 1-butyl-3-methylimidazolium; EMIm: 1-ethyl-3-methylimidazolium). Based on different reaction conditions, different coordinative modes including the absence of the crown ether in the product (, ), splitting of the crown ether (), and coordination of 24c8 via six of eight oxygen atoms () and, finally, via all oxygen atoms () are observed.
View Article and Find Full Text PDFACS Appl Mater Interfaces
December 2024
School of Mechanical Engineering, Hangzhou Dianzi University, Hangzhou 310018, China.
Flexible sensors are increasingly significant in applications such as smart wearables and human-computer interactions. However, typical flexible sensors are spatially limited and can generally detect only one deformation mode. This study presents a novel multimodal flexible sensor that combines three sensing units: optoelectronics, ionic liquids, and conductive fabrics.
View Article and Find Full Text PDFChemSusChem
December 2024
Technical University of Denmark: Danmarks Tekniske Universitet, Department of Energy Conversion and Storage, Anker Engelunds Vej 1, 2800, Kongens Lyngby, DENMARK.
Deep eutectic solvents (DESs) are an emerging class of ionic liquids with high tunability and promise for battery applications. In this study, we investigated acetamide-based DESs for Zn batteries, focusing on a synergistic mixture of two known acetamide (Ace)-based DESs: Ace4ZnCl2 and Ace4ZnTFSI2. By combining these two DESs in various ratios, we aimed to enhance ionic conductivity and optimize electrochemical performance while addressing corrosion concerns.
View Article and Find Full Text PDFEnviron Health (Wash)
December 2024
Institute of Environmental Research at Greater Bay Area, Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou 510006, China.
The rational design of molecules with the desired functionality presents a significant challenge in chemistry. Moreover, it is worth noting that making chemicals safe and sustainable is crucial to bringing them to the market. To address this, we propose a novel deep learning framework developed explicitly for inverse design of molecules with both functionality and biocompatibility.
View Article and Find Full Text PDFJ Colloid Interface Sci
December 2024
College of Chemistry and Materials Engineering, Bohai University, Jinzhou 121013, China. Electronic address:
The unique structure and strong interaction of multiphase hybrid materials have garnered significant attention as prospective candidates for electrode materials in the realm of energy storage. The present study presents a rational design of a functional NiSe-CoSe/N, B double-doped carbon hybrid composite (NCS/C), resulting in the emergence of various novel cooperative regulatory mechanisms involving: (i) the heterogeneous structure of NiSe and CoSe generates built-in electric fields to increase electron mobility; (ii) the incorporation of polyatomic double-doped carbon (N, and B) expedites electron transfer rate; intriguingly, (iii) ionic liquids not only serve as polyatomic dopants in the reaction system but also influence the microstructure of the composite. Benefiting from these synergistic effects, the NCS/C hybrid exhibits remarkable charge storage capacity and rapid electrochemical kinetics, driven by its multi-fold hollow structure and multicomponent cooperative modulation.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!