This study is devoted to the design of an elastic polymer thin film-based capacitive wind-pressure sensor to meet the anticipated use for real-time monitoring of structural wind pressure in civil engineering. This sensor is composed of four basic units: lateral elastic deflection unit of a wind-driven circular polymer thin film, parallel plate capacitor with a movable circular electrode plate, spring-driven return unit of the movable electrode plate, and dielectric materials between electrode plates. The capacitance of the capacitor varies with the parallel move of the movable electrode plate which is first driven by the lateral elastic deflection of the wind-driven film and then is, after the wind pressure is reduced or eliminated, returned quickly by the drive springs. The closed-form solution for the contact problem between the wind-driven thin film and the spring-driven movable electrode plate is presented, and its reliability is proved by the experiment conducted. The numerical examples conducted show that it is workable that by using the numerical calibration based on the presented closed-form solution the proposed sensor is designed into a nonlinear sensor with larger pressure-monitoring range and faster response speed than the linear sensor usually based on experimental calibration.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7570084 | PMC |
http://dx.doi.org/10.3390/polym12092133 | DOI Listing |
ACS Appl Mater Interfaces
December 2024
Advanced Functional Nanomaterials Research Laboratory, Centre for Nanoscience and Technology, Madanjeet School of Green Energy Technologies, Pondicherry University (A Central University), Dr. R. Venkataraman Nagar, Kalapet, Puducherry 605014, India.
The development of quasi-solid-state lithium metal batteries (QSSLMBs) is hindered by inadequate interfacial contact, poor wettability between electrodes and quasi-solid-state electrolytes, and significant volume changes during long-term cycling, leading to safety risks and cataclysmic failures. Here, we report an innovative approach to enhance interfacial properties through the construction of QSSLMBs. A multilayer design integrates a microwave-synthesized LiAlTi(PO) (LATP) ceramic electrolyte, which is surface-coated with a lithiophilic conductive ink comprising VS and disulfonated functionalized graphene nanosheets (VS-DSGNS) using a low-cost nail-polish binder.
View Article and Find Full Text PDFACS Omega
December 2024
China Institute of Atomic Energy, Beijing 102413, China.
Various electrochemical tests were carried out to elucidate the electrolytic oxidation mechanism of oxalic acid on a boron-doped diamond electrode in a nitric acid environment. These included cyclic voltammetry, AC impedance, constant current electrolysis, and electron paramagnetic resonance spectroscopy. The impact of electrode potential, current density, nitric acid concentration, and electrode plate spacing on the oxidation of oxalic acid was investigated.
View Article and Find Full Text PDFJ Colloid Interface Sci
December 2024
State Key Laboratory of Electrical Insulation and Power Equipment, School of Electrical Engineering, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, China. Electronic address:
Aqueous Zn-ion batteries (AZIBs) have attracted widespread attention owing to the feature of low cost, inherent safety and eco-friendliness. However, the poor reversibility of Zn anode severely hinders the practical applicability of AZIBs. Separator modification is an effective way to functionalize the electrode/electrolyte interface and improve the cycling performance.
View Article and Find Full Text PDFFront Neurosci
December 2024
Department of Quantum Nanoscience, Kavli Institute of Nanoscience, Delft University of Technology, Delft, Netherlands.
Neuronal activity in the highly organized networks of the central nervous system is the vital basis for various functional processes, such as perception, motor control, and cognition. Understanding interneuronal connectivity and how activity is regulated in the neuronal circuits is crucial for interpreting how the brain works. Multi-electrode arrays (MEAs) are particularly useful for studying the dynamics of neuronal network activity and their development as they allow for real-time, high-throughput measurements of neural activity.
View Article and Find Full Text PDFInt J Mol Sci
November 2024
Department of Engineering Physics, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal.
Solid-state batteries offer significant advantages but present several challenges. Given the complexity of these systems, it is good practice to begin the study with simpler models and progressively advance to more complex configurations, all while maintaining an understanding of the physical principles governing solid-state battery operation. The results presented in this work pertain to cells without traditional electrodes, thus providing a foundation for guiding the development of fully functional solid-state cells.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!