The LiNiMnCoO Li-rich NMC positive electrode (cathode) for lithium-ion batteries has been coated with nanocrystals of the LiMnCoO high-voltage spinel cathode material. The coating was applied through a single-source precursor approach by a deposition of the molecular precursor LiMnCo(thd) (thd = 2,2,6,6-tetramethyl-3,5-heptanedionate) dissolved in diethyl ether, followed by thermal decomposition at 400 °C inair resulting in a chemically homogeneous cubic spinel. The structure and chemical composition of the coatings, deposited on the model SiO spheres and Li-rich NMC crystallites, were analyzed using powder X-ray diffraction, electron diffraction, high angle annular dark-field scanning transmission electron microscopy (HAADF-STEM), and energy-dispersive X-ray (EDX) mapping. The coated material containing 12 wt.% of spinel demonstrates a significantly improved first cycle Coulombic efficiency of 92% with a high first cycle discharge capacity of 290 mAhg. The coating also improves the capacity and voltage retention monitored over 25 galvanostatic charge-discharge cycles, although a complete suppression of the capacity and voltage fade is not achieved.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7558323 | PMC |
http://dx.doi.org/10.3390/nano10091870 | DOI Listing |
ACS Appl Mater Interfaces
January 2025
Functional Materials and Electrochemistry Lab, Department of Chemistry, Indian Institute of Technology Kharagpur, Kharagpur, West Bengal 721302, India.
The rational design and synthesis of bifunctionally active and durable oxygen electrocatalysts have garnered significant attention for electrochemical energy conversion and storage. Intermetallic nanostructures are particularly promising for these applications due to their unique catalytic properties and exceptional durability. In this study, we present a fascinating synthetic approach for the direct synthesis of a bifunctional oxygen electrocatalyst based on nitrogen-doped carbon-encapsulated ordered PdFe (o-PdFe@NC) intermetallic, using a cyano-bridged bimetallic single-source precursor tailored for aqueous rechargeable zinc-air batteries (ZABs).
View Article and Find Full Text PDFNanoscale Adv
December 2024
Department of Chemical Engineering, University of Manchester Manchester M13 9PL UK
Nanocrystals are widely explored for a range of medical, imaging, sensing, and energy conversion applications. CdS nanocrystals have been reported as excellent photocatalysts, with thin film CdS also highly important in photovoltaic devices. To optimise properties of nanocrystals, control over phase, facet, and morphology are vital.
View Article and Find Full Text PDFNat Commun
December 2024
Department of Physics, Chemistry and Biology, Linköping University, Linköping, Sweden.
Semiconductor devices are constructed from stacks of materials with different electrical properties, making deposition of thin layers central in producing semiconductor chips. The shrinking of electronics has resulted in complex device architectures which require deposition into holes and recessed features. A key parameter for such deposition is the step coverage (SC), which is the ratio of the thickness of material at the bottom and at the top.
View Article and Find Full Text PDFChemistryOpen
December 2024
School of Chemistry and School of Materials, The University of Manchester, Oxford Road, Manchester, M13 9PL, UK.
Dichalcogenoimidodiphosphinate complexes of zinc [Zn{(EPPr)N}], [E=Se,Se; S,Se] were synthesized through metathetical reactions from the dichalcogenoimidodiphosphinate ligands [(EE'PPrNH)] (E, E'=Se, Se; S, Se). These complexes were characterized and used as single-source precursors through Aerosol-Assisted Chemical Vapour Deposition (AACVD) for the deposition of cubic zinc selenide (ZnSe) films on glass substrates. The deposition temperature occurred at 500 and 525 °C, while the flow rates of the carrier gas was 160 and 240 standard cubic centimetre (sccm).
View Article and Find Full Text PDFACS Nano
December 2024
Department of Chemistry: Metalorganics and Inorganic Materials, Technische Universität Berlin, Straße des 17. Juni 115, Sekr. C2, Berlin 10623, Germany.
The development and comprehensive understanding of nickel chalcogenides are critical since they constitute a class of efficient electro(pre)catalysts for the oxygen evolution reaction (OER) and value-added organic oxidations. This study introduces a knowledge-based facile approach to analogous NiE (E = S, Se, Te) phases, originating from molecular β-diketiminato [NiE] complexes and their application for OER and organic oxidations. The recorded activity trends for both target reactions follow the order NiSe > NiS > NiTe.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!