Analysis of Cattle Social Transitional Behaviour: Attraction and Repulsion.

Sensors (Basel)

Agriculture and Food, Commonwealth Scientific and Industrial Research Organisation (CSIRO), Armidale, NSW 2350, Australia.

Published: September 2020

Understanding social interactions in livestock groups could improve management practices, but this can be difficult and time-consuming using traditional methods of live observations and video recordings. Sensor technologies and machine learning techniques could provide insight not previously possible. In this study, based on the animals' location information acquired by a new cooperative wireless localisation system, unsupervised machine learning approaches were performed to identify the social structure of a small group of cattle yearlings (n=10) and the social behaviour of an individual. The paper first defined the affinity between an animal pair based on the ranks of their distance. Unsupervised clustering algorithms were then performed, including K-means clustering and agglomerative hierarchical clustering. In particular, K-means clustering was applied based on logical and physical distance. By comparing the clustering result based on logical distance and physical distance, the leader animals and the influence of an individual in a herd of cattle were identified, which provides valuable information for studying the behaviour of animal herds. Improvements in device robustness and replication of this work would confirm the practical application of this technology and analysis methodologies.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7570944PMC
http://dx.doi.org/10.3390/s20185340DOI Listing

Publication Analysis

Top Keywords

machine learning
8
k-means clustering
8
based logical
8
physical distance
8
clustering
5
analysis cattle
4
social
4
cattle social
4
social transitional
4
transitional behaviour
4

Similar Publications

Background: There is a need to systematically compare and contrast mortality predictors and disparities in people with intellectual disabilities (ID) for global prevention strategy development.

Method: Bibliographic databases and grey literature were searched using systematic review methodology and the machine learning tool "Abstrackr."

Results: Fifty-four relevant articles and reports published from 2010 to 2019 were identified.

View Article and Find Full Text PDF

Background: In pancreatic surgery Postoperative pancreatic fistula (POPF) represents the most dreaded complication, for which pancreatic texture is acknowledged as one of the strongest predictors. No consensual objective reference has been defined to evaluate the pancreas composition. The presented study aimed to mine histology data of the pancreatic tissue composition with AI assist and correlate it with clinic-pathological parameters derived from the RECOPANC study.

View Article and Find Full Text PDF

Voice Quality as Digital Biomarker in Bipolar Disorder: A Systematic Review.

J Voice

January 2025

Department of Surgery, UMONS Research Institute for Health Sciences and Technology, University of Mons (UMons), Mons, Belgium; Division of Laryngology and Bronchoesophagology, Department of Otolaryngology Head Neck Surgery, EpiCURA Hospital, Baudour, Belgium; Department of Otolaryngology-Head and Neck Surgery, Foch Hospital, School of Medicine, UFR Simone Veil, Université Versailles Saint-Quentin-en-Yvelines (Paris Saclay University), Paris, France; Department of Otolaryngology, Elsan Hospital, Paris, France. Electronic address:

Background: Voice analysis has emerged as a potential biomarker for mood state detection and monitoring in bipolar disorder (BD). The systematic review aimed to summarize the evidence for voice analysis applications in BD, examining (1) the predictive validity of voice quality outcomes for mood state detection, and (2) the correlation between voice parameters and clinical symptom scales.

Methods: A PubMed, Scopus, and Cochrane Library search was carried out by two investigators for publications investigating voice quality in BD according to Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) statements.

View Article and Find Full Text PDF

A neurocomputational account of multi-line electronic gambling machines.

Trends Cogn Sci

January 2025

Department of Psychology, Biological Psychology, University of Cologne, Cologne, Germany. Electronic address:

Multi-line electronic gambling machines (EGMs) are strongly associated with problem gambling. Dopamine (DA) plays a central role in substance-use disorders, which share clinical and behavioral features with disordered gambling. The structural design features of multi-line EGMs likely lead to the elicitation of various dopaminergic effects within their nested anticipation-outcome structure.

View Article and Find Full Text PDF

Many atopic dermatitis (AD) patients have suboptimal responses to Dupilumab therapy. This study identified key genes linked to this resistance using multi-omics approaches to benefit more patients. We selected a prospective cohort of 54 CE treated with Dupilumab from the GEO database.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!