The aim of this study was to investigate the interactive effects of dietary nano chromium picolinate (nCrPic) and dietary fat on genes involved in insulin signaling in skeletal muscle and subcutaneous adipose tissue of pigs. Forty-eight gilts were stratified on body weight into four blocks of four pens of three pigs and then within each block each pen was randomly allocated to four treatment groups in a 2 × 2 factorial design. The respective factors were dietary fat (22 or 57 g/kg) and dietary nCrPic (0 or 400 ppb nCrPic) fed for six weeks. Skeletal muscle samples were collected from the and subcutaneous adipose tissue collected from above this muscle. Dietary nCrPic increased adiponectin, uncoupling protein 3 (UCP3) and serine/threonine protein kinase (AKT) mRNA expression, whereas dietary fat decreased adiponectin and increased leptin, tumor necrosis factor- (TNF-), peroxisome proliferator-activated receptors (PPAR) and CCAAT/enhancer-binding protein (C/EBP) mRNA expression in adipose tissue. In skeletal muscle, dietary nCrPic increased phosphatidylinositol 3 kinase (PI3K), AKT, UCP3 and interleukin-15 (IL-15), as well as decreased suppressor of cytokine signaling 3 (SOCS3) mRNA expression. The improvement in insulin signaling and muscle mass and the reduction in carcass fatness by dietary nCrPic may be via decreased SOCS3 and increased UCP3 and IL-15 in skeletal muscle and increased adiponectin in subcutaneous adipose tissue.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7552722 | PMC |
http://dx.doi.org/10.3390/ani10091685 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!