Characterizing the surface deformation during the inter-survey period could assist in understanding rock mass progressive failure processes. Moreover, 3D reconstruction of rock mass surface is a crucial step in surface deformation detection. This study presents a method to reconstruct the rock mass surface at close range in a fast way using the improved structure from motion-multi view stereo (SfM) algorithm for surface deformation detection. To adapt the unique feature of rock mass surface, the AKAZE algorithm with the best performance in rock mass feature detection is introduced to improve SfM. The surface reconstructing procedure mainly consists of image acquisition, feature point detection, sparse reconstruction, and dense reconstruction. Hereafter, the proposed method was verified by three experiments. Experiment 1 showed that this method effectively reconstructed the rock mass model. Experiment 2 proved the advanced accuracy of the improved SfM compared with the traditional one in reconstructing the rock mass surface. Eventually, in Experiment 3, the surface deformation of rock mass was quantified through reconstructing images before and after the disturbance. All results have shown that the proposed method could provide reliable information in rock mass surface reconstruction and deformation detection.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7570912PMC
http://dx.doi.org/10.3390/s20185371DOI Listing

Publication Analysis

Top Keywords

rock mass
40
mass surface
24
surface deformation
20
deformation detection
16
surface
12
rock
10
mass
10
surface reconstruction
8
close range
8
proposed method
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!