Hypoxia in the microenvironment is related to chemotherapy resistance, tumor progression, and metastasis. Curcumin, as a phenolic compound extracted from the turmeric, has been used as an anti-cancer agent with low toxicity in recent years. Since curcumin has inhibitory activities against hypoxia-inducible factors (HIFs) in several cancers, this study was conducted to examine the effect of curcumin on MCF-7 cells and cancer stem-like cells (CS-LCs) under hypoxic and normoxic conditions. CS-LCs were isolated from MCF-7 cells using the magnet activated cell sorting (MACS) method based on CD / CD surface markers. The effects of curcumin on the viability of MCF-7 cells and CS-LCs were examined in hypoxic and normoxic conditions using the MTT test. The effects of curcumin on apoptosis and cell cycle of CS-LCs and MCF-7 cells were analyzed using flow cytometry. Moreover, the inhibitory effects of curcumin on the levels of HIF-1 and HIF-2α protein in CS-LCs were investigated using the western blot method. Early apoptosis occurred in CSC-LCs more than MCF-7 cells under hypoxic conditions. Flow cytometry assay showed that curcumin caused cell cycle arrest of CSC-LCs and MCF-7 at the G2/M phase under hypoxic conditions while under normoxic conditions, arrest occurred at the G0/G1 phase in MCF-7 cells and at S and G2/M phases in CS-LCs. Based on the results, the curcumin inhibited the expression of HIF-1 by degrading ARNT in CS-LCs.In conclusion, curcumin has inhibitory effects on MCF- 7 cells and CS- LCs and thus may be used as an antitumor agent.

Download full-text PDF

Source
http://dx.doi.org/10.1055/a-1201-2602DOI Listing

Publication Analysis

Top Keywords

mcf-7 cells
24
normoxic conditions
12
effects curcumin
12
cells
10
curcumin
9
factors hifs
8
cancer stem-like
8
stem-like cells
8
curcumin inhibitory
8
cells cs-lcs
8

Similar Publications

Purpose: Breast cancer ranks as the most prevalent cancer in women, characterized by heightened fatty acid synthesis and glycolytic activity. Fatty acid synthase (FASN) is prominently expressed in breast cancer cells, regulating fatty acid synthesis, thereby enhancing tumor growth and migration, and leading to radioresistance. This study aims to investigate how FASN inhibition affects cell proliferation, migration, and radioresistance in breast cancer, as well as the mechanisms involved.

View Article and Find Full Text PDF

Discovery of Novel Small-Molecule Inhibitors Disrupting the MTDH-SND1 Protein-Protein Interaction.

J Med Chem

January 2025

State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing 210009, China.

MTDH-SND1 protein-protein interaction (PPI) plays an important role in the initiation and development of tumors, and it is a target for the treatment of breast cancer. In this study, we identified and synthesized a series of novel small-molecule inhibitors of MTDH-SND1 PPI. The representative compound showed potent activity against MTDH-SND1 PPI with an IC of 487 ± 99 nM and tight binding to the SND1-purified protein with a value of 279 ± 17 nM.

View Article and Find Full Text PDF
Article Synopsis
  • Mammary carcinoma consists of different cell types with varying abilities to spread, and a specific type of cell (4T1) was identified as highly metastatic, influenced by TGF-β and BMP-1.
  • Researchers found that inhibiting BMP-1 not only reduced cancer cell growth but also improved the effectiveness of the chemotherapy drug doxorubicin.
  • This study highlights the potential of targeting BMP-1 as a promising therapeutic strategy for treating aggressive metastatic breast cancer.
View Article and Find Full Text PDF

Globally, breast cancer continues to be the leading type of cancer affecting women, with rising mortality rates projected by 2030. This highlights the importance of developing new, affordable treatments, like drug delivery systems that use nanoparticles. Gold nanoparticles (AuNPs), including their exceptional optical and physical attributes, make them an attractive vehicle for targeted treatment, allowing for accurate and focused delivery of medication directly to cancerous cells while reducing harmful side effect.

View Article and Find Full Text PDF

Background: Patients with estrogen receptor (ER)-positive breast cancer (BC) can be treated with endocrine therapy targeting ER, however, metastatic recurrence occurs in 25% of the patients who have initially been treated. Secreted proteins from tumors play important roles in cancer metastasis but previous methods for isolating secretory proteins had limitations in identifying novel targets.

Methods: We applied an in situ secretory protein labeling technique using TurboID to analyze secretome from tamoxifen-resistant (TAMR) BC.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!