A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Sensor-based indicators of performance changes between sessions during robotic surgery training. | LitMetric

Training of surgeons is essential for safe and effective use of robotic surgery, yet current assessment tools for learning progression are limited. The objective of this study was to measure changes in trainees' cognitive and behavioral states as they progressed in a robotic surgeon training curriculum at a medical institution. Seven surgical trainees in urology who had no formal robotic training experience participated in the simulation curriculum. They performed 12 robotic skills exercises with varying levels of difficulty repetitively in separate sessions. EEG (electroencephalogram) activity and eye movements were measured throughout to calculate three metrics: engagement index (indicator of task engagement), pupil diameter (indicator of mental workload) and gaze entropy (indicator of randomness in gaze pattern). Performance scores (completion of task goals) and mental workload ratings (NASA-Task Load Index) were collected after each exercise. Changes in performance scores between training sessions were calculated. Analysis of variance, repeated measures correlation, and machine learning classification were used to diagnose how cognitive and behavioral states associate with performance increases or decreases between sessions. The changes in performance were correlated with changes in engagement index (r=-.25,p<.001) and gaze entropy (r=-.37,p<.001). Changes in cognitive and behavioral states were able to predict training outcomes with 72.5% accuracy. Findings suggest that cognitive and behavioral metrics correlate with changes in performance between sessions. These measures can complement current feedback tools used by medical educators and learners for skills assessment in robotic surgery training.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7606790PMC
http://dx.doi.org/10.1016/j.apergo.2020.103251DOI Listing

Publication Analysis

Top Keywords

robotic surgery
8
cognitive behavioral
8
behavioral states
8
mental workload
8
performance scores
8
changes performance
8
performance
5
changes
5
robotic
5
training
5

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!