Clarification of undiagnosed ataxia using whole-exome sequencing with clinical implications.

Parkinsonism Relat Disord

Department of Neurology, Samsung Medical Center, Seoul, South Korea; Neuroscience Center, Samsung Medical Center, Seoul, South Korea; Department of Neurology, Sungkyunkwan University School of Medicine, Suwon, South Korea. Electronic address:

Published: November 2020

AI Article Synopsis

  • The study focuses on hereditary cerebellar ataxias in Korean patients who were undiagnosed after standard testing, utilizing whole-exome sequencing (WES) to identify genetic causes.
  • A total of 77 patients from 68 families were analyzed, leading to the discovery of pathogenic variants in 14 different genes for 18 families, achieving a diagnostic yield of 26.5%.
  • The most common diagnosis was hereditary spastic paraplegia, with a notable occurrence of adult-onset ataxias and variants of uncertain significance found in 20.6% of families.

Article Abstract

Background: Hereditary cerebellar ataxias exhibit heterogeneous phenotypes and genotypes. To date, advancement of next-generation sequencing technologies have identified many causative genes for ataxia in various population. In this study, whole-exome sequencing (WES) was utilized to explore the genetic cause of ataxia among Korean patients who remained undiagnosed following routine investigation.

Methods: Patients with ataxia were enrolled in this study. We excluded patients with acquired, degenerative, and trinucleotide repeat ataxias, such as spinocerebellar ataxia 1 (SCA1), SCA2, SCA3, SCA6, SCA7, SCA8, SCA17, Dentatorubral-pallidoluysian atrophy, and Friedreich ataxia. WES was performed. After basic filtering based on population databases, we then performed primary filtering to screen for known ataxia-associated genes, followed by expanded filtering customized for individual patients.

Results: We enrolled 77 ataxia patients from 68 families. Eighteen families had pathogenic or likely pathogenic variants in 14 different genes, including NEU1, APTX, SPG7, HTRA1, POLG2, SYNE1, CACNA1G, CACNA1A, ITPR1, AHI1, SPG11, ANO10, ATM, and C5orf42, resulting in a diagnostic yield of 26.5%. Hereditary spastic paraplegia was the most common diagnosis. Adult-onset ataxias and those without family history were frequently encountered. Variants of unknown significance were found in 14 (20.6%) families, some of which were highly probable from the clinical perspective.

Conclusion: Using WES, we explored the molecular etiology of ataxia in patients whom were not diagnosed through routine clinical investigation. This study revealed unexpected rare disorders as well as the known ataxia-associated genes in a Korean population.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.parkreldis.2020.08.040DOI Listing

Publication Analysis

Top Keywords

ataxia
8
whole-exome sequencing
8
ataxia-associated genes
8
ataxia patients
8
patients
5
clarification undiagnosed
4
undiagnosed ataxia
4
ataxia whole-exome
4
sequencing clinical
4
clinical implications
4

Similar Publications

A conifer metabolite corrects episodic ataxia type 1 by voltage sensor-mediated ligand activation of Kv1.1.

Proc Natl Acad Sci U S A

January 2025

Bioelectricity Laboratory, Department of Physiology and Biophysics, School of Medicine, University of California, Irvine, CA 92697.

Loss-of-function sequence variants in , which encodes the voltage-gated potassium channel Kv1.1, cause Episodic Ataxia Type 1 (EA1) and epilepsy. Due to a paucity of drugs that directly rescue mutant Kv1.

View Article and Find Full Text PDF

A wild, adult male pied butcherbird (Cracticus nigrogularis) accidentally ingested 263 mg/kg of oral phenobarbital. Pronounced sedation was observed by 30 mins, followed by altered consciousness, marked ataxia and increased respiratory effort. The serum phenobarbital level on admission to a wildlife hospital was 84.

View Article and Find Full Text PDF

Poincaré plot analysis of ECG uncovers beneficial effects of omaveloxolone in a mouse model of Friedreich's ataxia.

Heart Rhythm

January 2025

Department of Molecular Biosciences, University of California, Davis, CA, USA; Department of Basic Sciences, California Northstate University, Elk Grove, CA. Electronic address:

Background: Friedreich's ataxia (FA) is a rare inherited neuromuscular disorder, where most patients die from lethal cardiomyopathy and arrhythmias. Mechanisms leading to arrhythmic events in FA patients are poorly understood.

Objective: This study aims to examine cardiac electrical signal propagation in mouse model of FA with severe cardiomyopathy and evaluate effects of omaveloxolone (OMAV), the first FDA-approved therapy.

View Article and Find Full Text PDF

Spinocerebellar Ataxia Type 8 (SCA8) is an inherited neurodegenerative disease caused by a bidirectionally expressed CTG●CAG expansion mutation in the ATXN-8 and ATXN8-OS genes. While SCA8 patients have motor abnormalities, patients may also exhibit psychiatric symptoms and cognitive dysfunction. It is difficult to elucidate how the disease alters brain function in areas with little or no degeneration producing both motor and cognitive symptoms.

View Article and Find Full Text PDF

The Genetics of Neurodevelopmental Disorders Lab in Padua provided a new intellectual disability (ID) Panel challenge for computational methods to predict patient phenotypes and their causal variants in the context of the Critical Assessment of the Genome Interpretation, 6th edition (CAGI6). Eight research teams submitted a total of 30 models to predict phenotypes based on the sequences of 74 genes (VCF format) in 415 pediatric patients affected by Neurodevelopmental Disorders (NDDs). NDDs are clinically and genetically heterogeneous conditions, with onset in infant age.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!