Tumorigenic response in lung tumor susceptible A/J mice after sub-chronic exposure to calcium chromate or iron (III) oxide.

Toxicol Lett

Health Effects Laboratory Division, National Institute for Occupational Safety and Health, Morgantown, WV, United States; West Virginia University, School of Medicine, Morgantown, WV, United States.

Published: November 2020

AI Article Synopsis

  • The International Agency for Research on Cancer (IARC) classifies iron oxides as Group 3, meaning they are not classifiable as carcinogenic, while certain iron-related occupational exposures are classified as Group 1, known to be carcinogenic.
  • A study conducted with A/J mice showed that exposure to iron (III) oxide (FeO) and calcium chromate (CaCrO) resulted in a significant increase in lung tumors, with both substances enhancing lung tumor multiplicity compared to control (sham) groups.
  • Histopathological analysis revealed that bronchiolo-alveolar adenomas and carcinomas were the main types of lung tumors observed, with a notable increase in the CaCrO group and a nearly significant increase in

Article Abstract

Iron oxides are Group 3 (not classifiable as to its carcinogenicity to humans) according to the International Agency for Research on Cancer (IARC). Occupational exposures during iron and steel founding and hematite underground mining as well as other iron predominant exposures such as welding are Group 1 (carcinogenic to humans). The objective of this study was to investigate the potential of iron as iron (III) oxide (FeO) to initiate lung tumors in A/J mice, a lung tumor susceptible strain. Male A/J mice were exposed by oropharyngeal aspiration to suspensions of FeO (1 mg) or calcium chromate (CaCrO; 100 μg; positive control) for 26 weeks (once per week). Shams were exposed to 50 μL phosphate buffered saline (PBS; vehicle). Mice were euthanized 70 weeks after the first exposure and lung nodules were enumerated. Both CaCrO and FeO significantly increased gross-observed lung tumor multiplicity in A/J mice (9.63 ± 0.55 and 3.35 ± 0.30, respectively) compared to sham (2.31 ± 0.19). Histopathological analysis showed that bronchiolo-alveolar adenomas (BAA) and carcinomas (BAC) were the primary lung tumor types in all groups and were increased in the exposed groups compared to sham. BAC were significantly increased (146 %) in the CaCrO group and neared significance in the FeO group (100 % increase; p = 0.085). BAA and other histopathological indices of toxicity followed the same pattern with exposed groups increased compared to sham control. In conclusion, evidence from this study, in combination with our previous studies, demonstrate that exposure to iron alone may be a potential risk factor for lung carcinogenesis.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9827416PMC
http://dx.doi.org/10.1016/j.toxlet.2020.09.012DOI Listing

Publication Analysis

Top Keywords

lung tumor
16
a/j mice
16
compared sham
12
tumor susceptible
8
calcium chromate
8
iron iii
8
iii oxide
8
groups increased
8
exposed groups
8
lung
7

Similar Publications

The current (and possible future) role of opioid analgesia in lung cancer surgery.

Best Pract Res Clin Anaesthesiol

March 2024

Department of Anesthesiology and Critical Care Medicine, Memorial Sloan Kettering Cancer Center, Department of Anesthesia and Critical Care Medicine, 1275 York Avenue, New York, NY, 10028, USA. Electronic address:

The objectives of this minireview are two-fold. The first is to discuss the evolution of opioid analgesia in perioperative medicine in the context of thoracic non-cardiac surgery. Current standard-of-care, aiming to optimize analgesia and limit undesirable side effects, is discussed in the context of multimodal analgesia, specifically enhanced recovery after thoracic surgery pathways.

View Article and Find Full Text PDF

Robotic bronchoscopy: Evolution of advanced diagnostic technologies for pulmonary lesions.

Best Pract Res Clin Anaesthesiol

March 2024

1400 Holcombe Blvd, FC 13.2000, Houston, TX, 77030, USA. Electronic address:

Lung cancer is among one of the most commonly diagnosed malignancies and is the leading cause of cancer-related mortality in both men and women globally, with an estimated 1.8 million deaths annually. Moreover, it is also the leading cause of cancer related deaths in the United States (U.

View Article and Find Full Text PDF

Introduction: The purpose of this study was to evaluate the association between body composition, overall survival, odds of receiving treatment, and patient-reported outcomes (PROs) in individuals living with metastatic non-small-cell lung cancer (mNSCLC).

Methods: This retrospective analysis was conducted in newly diagnosed patients with mNSCLC who had computed-tomography (CT) scans and completed PRO questionnaires close to metastatic diagnosis date. Cox proportional hazard models and logistic regression evaluated overall survival and odds of receiving treatment, respectively.

View Article and Find Full Text PDF

The promises and perils of circulating tumor DNA for monitoring immunotherapy response in non-small cell lung cancer.

Explor Target Antitumor Ther

November 2024

Division of Pulmonary, Critical Care, and Sleep Disorders Medicine, Department of Medicine, University of Louisville School of Medicine, Louisville, KY 40202, USA.

There has been a rapid expansion of immunotherapy options for non-small cell lung cancer (NSCLC) over the past two decades, particularly with the advent of immune checkpoint inhibitors. Despite the emerging role of immunotherapy in adjuvant and neoadjuvant settings though, relatively few patients will respond to immunotherapy which can be problematic due to expense and toxicity; thus, the development of biomarkers capable of predicting immunotherapeutic response is imperative. Due to the promise of a noninvasive, personalized approach capable of providing comprehensive, real-time monitoring of tumor heterogeneity and evolution, there has been wide interest in the concept of using circulating tumor DNA (ctDNA) to predict treatment response.

View Article and Find Full Text PDF

The 1.7 kb DRAIC long noncoding RNA inhibits tumor growth, inhibits cancer cell invasion, migration, colony formation and interacts with IKK (IκB kinase) subunits, inhibiting the phosphorylation and degradation of the NF-κB inhibitor, IκB, to suppress the activation of NF-κB. Whether these activities are all linked is unclear.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!