Nuclear receptors (NRs) are key regulators of human health and constitute a relevant target for medicinal chemistry applications as well as for toxicological risk assessment. Several open databases dedicated to small molecules that modulate NRs exist; however, depending on their final aim (i.e., adverse effect assessment or drug design), these databases contain a different amount and type of annotated molecules, along with a different distribution of experimental bioactivity values. Stemming from these considerations, in this work we aim to provide a unified dataset, NURA (NUclear Receptor Activity) dataset, collecting curated information on small molecules that modulate NRs, to be intended for both pharmacological and toxicological applications. NURA contains bioactivity annotations for 15,247 molecules and 11 selected NRs, and it was obtained by integrating and curating data from toxicological and pharmacological databases (i.e., Tox21, ChEMBL, NR-DBIND and BindingDB). Our results show that NURA dataset is a useful tool to bridge the gap between toxicology- and medicinal-chemistry-related databases, as it is enriched in terms of number of molecules, structural diversity and covered atomic scaffolds compared to the single sources. To the best of our knowledge, NURA dataset is the most exhaustive collection of small molecules annotated for their modulation of the chosen nuclear receptors. NURA dataset is intended to support decision-making in pharmacology and toxicology, as well as to contribute to data-driven applications, such as machine learning. The dataset and the data curation pipeline can be downloaded free of charge on Zenodo at the following DOI: https://doi.org/10.5281/zenodo.3991561.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.taap.2020.115244 | DOI Listing |
Hematol Oncol
January 2025
Babak Myeloma Group, Department of Pathophysiology, Faculty of Medicine, Masaryk University, Brno, Czech Republic.
Multiple myeloma is a plasma cell malignancy characterized by an abnormal increase in monoclonal immunoglobulins. Despite significant advances in treatment, some patients progress to more aggressive forms of multiple myeloma, including extramedullary disease or plasma cell leukemia. Although the exact molecular mechanisms are not known, several studies have confirmed the involvement of small extracellular vesicle-enriched microRNAs in multiple myeloma progression.
View Article and Find Full Text PDFJ Cell Mol Med
January 2025
Department of Spine, Orthopaedic Center, Guangdong Second Provincial General Hospital, Jinan University, Guangzhou, China.
Osteogenic differentiation of bone marrow stem cells (BMSCs) is essential for bone tissue regeneration and repair. However, this process is often hindered by an unstable differentiation influenced by local microenvironmental factors. While small extracellular vesicles (sEVs) derived from osteogenically induced adipose mesenchymal stem cells (ADSCs) reportedly can promote osteogenic differentiation of BMSCs, the underlying molecular mechanisms remain incompletely understood.
View Article and Find Full Text PDFPhys Chem Chem Phys
January 2025
Engineering Research Center for Eco-Dyeing and Finishing of Textiles, Key Laboratory of Advanced Textile Materials and Manufacturing Technology, Ministry of Education, College of Textile Science and Engineering (International Institute of Silk), Zhejiang Sci-Tech University, Hangzhou 310018, People's Republic of China.
Nonconventional luminogens have great potential for applications in fields like anti-counterfeiting encryption. But so far, the photoluminescence quantum yield (PLQY) of most of these powders is still relatively low and the persistent room temperature phosphorescence (p-RTP) emission is relatively weak. To improve their PLQY and p-RTP, pressing the powder into tablets has been preliminarily proven to be an effective method, but the specific mechanism has not been fully elucidated yet.
View Article and Find Full Text PDFChem Commun (Camb)
January 2025
Department of Chemistry, CRI Center for Chemical Proteomics, Seoul National University, Seoul 08826, Korea.
We developed a design strategy focusing on pivotal secondary structural motifs-α-helix, β-strand, and β-turn-critical for PPI recognition, using a common core skeleton. The resulting peptide-inspired pyrimidodiazepine scaffolds were further subjected to comprehensive phenotypic screening to evaluate their efficacy. Our strategy offers a transformative approach to developing small-molecule PPI modulators with broad therapeutic potential.
View Article and Find Full Text PDFMacromol Rapid Commun
January 2025
State Key Laboratory of Applied Organic Chemistry (SKLAOC), Key Laboratory of Special Function Materials and Structure Design, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, 730000, China.
Conjugated polymers have attracted extensive attention as semiconducting materials in wearable and flexible electronics. In this study, we utilize atom-economical Knoevenagel reaction to construct two conjugated polymers, PTDPP-CNTT and PFDPP-CNTT, based on dialdehyde-thiophene/furan-flanked diketopyrrolopyrrole (DPP) and 2,2'-(thieno[3,2-b]thiophene-2,5-diyl)diacetonitrile (CNTT). The resulting polymers exhibited suitable highest occupied molecular orbital/lowest unoccupied molecular orbital (HOMO/LUMO) energy levels, small bandgaps, and broad UV-vis-NIR absorptions (≈400-1000 nm), endowing them with photothermal and balanced ambipolar semiconducting properties with hole and electron mobilities over 10 cmVs.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!