The metastable and thermodynamically favored phases of CuFeS are shown to be alternatively synthesized during partial cation exchange of hexagonal CuS using various phosphorus-containing ligands. Transmission electron microscopy and energy dispersive spectroscopy mapping confirm the retention of the particle morphology and the approximate CuFeS stoichiometry. Powder X-ray diffraction patterns and refinements indicate that the resulting phase mixtures of metastable wurtzite-like CuFeS versus tetragonal chalcopyrite are correlated with the Tolman electronic parameter of the tertiary phosphorus-based ligand used during the cation exchange. Strong L-type donors lead to the chalcopyrite phase and weak donors to the wurtzite-like phase. To our knowledge, this is the first demonstration of phase control in nanoparticle synthesis using solely L-type donors.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.nanolett.0c03122DOI Listing

Publication Analysis

Top Keywords

cation exchange
12
electronic parameter
8
l-type donors
8
phase
5
tolman's electronic
4
parameter ligand
4
ligand predicts
4
predicts phase
4
phase cation
4
exchange cufesnanoparticles
4

Similar Publications

The performance of Cu-exchanged chabazite (Cu-CHA) for the ammonia-assisted selective catalytic reduction of NO (NH-SCR) depends critically on the presence of paired complexes. Here, a machine-learning force field augmented with long-range Coulomb interactions is developed to investigate the effect of Al-distribution and Cu-loading on the mobility and pairing of complexes. Performing unbiased and constrained molecular dynamics simulations, we obtain unique information inaccessible to first-principle calculations and experiments.

View Article and Find Full Text PDF

Clay-catalyzed ozonation of Norfloxacin - Effects of metal cation and degradation rate on aqueous media toxicity towards Lemna minor.

Chemosphere

January 2025

Nanoqam, Department of Chemistry, University of Quebec at Montreal, H3C 3P8, Canada; École de technologie supérieure, Montréal (Québec), Canada, H3C 1K3. Electronic address:

Article Synopsis
  • Norfloxacin was ozonized in clay suspensions to study its toxicity on Lemna minor, which helps assess antibiotic impact in environments with clay.
  • The study found that norfloxacin causes toxicity in Lemna minor through oxidative stress, worsened by ozonation, affecting growth and chlorophyll levels.
  • Results indicate that the type of clay catalyst and the oxidation process influence the toxicity outcomes, revealing the potential formation of more harmful byproducts from the antibiotic.
View Article and Find Full Text PDF

Adding colour to ion-selective membranes.

Talanta

January 2025

Faculty of Chemistry, University of Warsaw, Pasteura 1, 02-093, Warsaw, Poland. Electronic address:

An idea of using ion-exchanger salt containing optically active cations to prepare ion-selective membranes is proposed. Although the presence of an ion-exchanger in the composition of neutral ionophore based sensors is necessary, the choice of available salts for cation-selective sensors preparation, is usually limited to sodium or potassium compounds. In this work we propose application of an alternative salt, using a cation optically active both in absorption and emission mode as a mobile one.

View Article and Find Full Text PDF

Transport mechanisms of the anthropogenic contaminant sulfamethoxazole in volcanic ash soils at equilibrium pH evaluated using the HYDRUS-1D model.

J Hazard Mater

January 2025

Facultad de Química y de Farmacia, Pontificia Universidad Católica de Chile, Vicuña Mackenna 4860, Santiago 7820436, Chile; Instituto para el Desarrollo Sustentable, Pontificia Universidad Católica de Chile, Vicuña Mackenna 4860, Santiago 7820436, Chile; Centro para el Desarrollo de la Nanociencia y Nanotecnología, CEDENNA, Santiago, Chile. Electronic address:

The volcanic soils in Chile, where a significant portion of agricultural activities take place, are impacted by the presence of veterinary drugs, including sulfamethoxazole (SMX). The study examines how different soil types influence the movement and retention of sulfamethoxazole (SMX) across four regions of Chile, focusing on conditions at a neutral pH of 7.0.

View Article and Find Full Text PDF

Changes in species' habitats provide important insights into the effects of climate change. , a critically endangered species endemic to karst ecosystems, has a highly restricted distribution and is a key biological resource. Despite its ecological importance, the factors influencing its habitat suitability and distribution remain poorly understood.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!