In this study, we disclose the catalytic addition of bi(cyclopentyl)diol-derived boronates to aldehydes promoted by chiral phosphoric acids, allowing for the formation of enantioenriched homoallylic, propargylic, and crotylic alcohols (up to >99% enantiomeric excess (ee), diastereomeric ratio (dr) >20:1). These boronate substrates provided superior enantioselectivities, allowing for the reactions to proceed with low catalyst loading (0.5-5 mol %) and reduced reaction time (15 min at room temperature for aldehyde allylboration). A wide substrate scope was exhibited, and the novel boronates provided high enantiocontrol. Reactions with substituted allylboronates and aldehydes yielded vicinal stereogenic alcohols bearing β-tertiary or quaternary carbon centers. High enantio- and diastereoselectivities were found due to the closed six-membered chair-like transition state, with backbone modifications of the boronate and its interactions with the chiral phosphoric acid being the most likely contributing factor.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acs.joc.0c01646 | DOI Listing |
J Am Chem Soc
January 2025
Frontiers Science Center for Transformative Molecules, Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China.
Direct synthesis of enantioenriched scaffolds with multiple adjacent stereocenters remains an important yet challenging task. Herein, we describe a highly diastereo- and enantioselective Cu-catalyzed alkylboration of cyclopropenes, with less reactive alkyl iodides as electrophiles, for the efficient synthesis of -substituted borylated cyclopropanes bearing three consecutive stereocenters. This protocol features mild conditions, a broad substrate scope, and good functional group tolerance, affording an array of chiral borylated cyclopropanes in good to high yields with excellent diastereo- and enantioselectivities.
View Article and Find Full Text PDFAnal Chem
January 2025
School of Petrochemical Engineering, Liaoning Petrochemical University, Fushun 113001, China.
Chiral discrimination is an indispensable tool that has pivotal importance in the assignment of absolute configuration and determination of enantiomeric excess in chiral compounds. A series of enantiomerically pure -1,2-diaminocyclohexane (-DACH)-derived benzamides were first synthesized by simple chemical steps, and 14 variated derivatives have been assessed as NMR chiral solvating agents (CSAs) for discrimination of the signals of mandelic acid (MA) in H NMR analysis. The highly efficient chiral recognition of CSA on different substrates, including MAs, carboxylic acids, amino acid derivatives, and phosphoric acids (32 examples), was expanded via H, F, and P NMR spectroscopy.
View Article and Find Full Text PDFSpectrochim Acta A Mol Biomol Spectrosc
January 2025
Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, 160 00 Prague, Czech Republic. Electronic address:
Model P-chirogenic phosphonates derived from isopinocampheol, offering an excellent experimental system for studying chirality on the phosphorus chiral center, were studied using a set of chiroptical methods including ECD, VCD and ROA. Thanks to their rigidity, limiting the number of possible conformers, we successfully correlated the experimental UV-vis/ECD, IR/VCD and Raman/ROA results with DFT calculations. This allowed us to confidently assign the absolute configuration of our models, and our assignment is consistent with X-ray diffraction (XRD) data.
View Article and Find Full Text PDFOrg Lett
January 2025
Department of Chemistry, Virginia Tech, Blacksburg, Virginia 24061, United States.
A Brønsted acid-catalyzed enantioselective synthesis of ()-1,3-butadienyl-2-carbinols is developed. By employing a chiral phosphoric acid as the catalyst, a variety of 1,3-butadienyl-2-carbinols were obtained in good yields with excellent -selectivities and enantiopurities from α-alkyl-substituted homoallenyl boronates.
View Article and Find Full Text PDFJ Am Chem Soc
January 2025
Institute of Organic Chemistry, University Regensburg, Universitätsstr. 31, 93053 Regensburg, Germany.
In ion-pair catalysis, the last intermediate structures prior to the stereoselective transition states are of special importance for predictive models due to the high isomerization barrier between - and -substrate double bonds connecting ground and transition state energies. However, in prior experimental investigations of chiral phosphoric acids (CPA) solely the early intermediates could be investigated while the key intermediate remained elusive. In this study, the first experimental structural and conformational insights into ternary complexes with CPAs are presented using a special combination of low temperature and relaxation optimized N HSQC-NOESY NMR spectroscopy to enhance sensitivity.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!