Ultraviolet photodissociation (UVPD) has emerged as a useful technique for characterizing peptide, protein, and protein complex primary and secondary structure. 193 nm UVPD, specifically, enables extensive covalent fragmentation of the peptide backbone without the requirement of a specific side chain chromophore and with no precursor charge state dependence. We have modified a commercial quadrupole-ion mobility-time-of-flight (Q-IM-TOF) mass spectrometer to include 193 nm UVPD following ion mobility. Ion mobility (IM) is a gas-phase separation technique that enables separation of ions by their size, shape, and charge, providing an orthogonal dimension of separation to mass analysis. Following instrument modifications, we characterized the performance of, and information that could be generated from, this new setup using the model peptides substance P, melittin, and insulin chain B. These experiments show extensive fragmentation across the peptide backbone and a variety of ion types as expected from 193 nm UVPD. Additionally, y-2 ions (along with complementary a+2 and b+2 ions) N-terminal to proline were observed. Combining the IM separation and mobility gating capabilities with UVPD, we demonstrate the ability to accomplish both mass- and mobility-selection of bradykinin des-Arg9 and des-Arg1 peptides followed by complete sequence characterization by UVPD. The new capabilities of this modified instrument demonstrate the utility of combining IM with UVPD because isobaric species cannot be independently selected with a traditional quadrupole alone.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8127984 | PMC |
http://dx.doi.org/10.1021/jasms.0c00259 | DOI Listing |
Acc Chem Res
January 2025
Center for Molecular Spectroscopy and Dynamics, Institute for Basic Science, Seoul 02841, Korea.
ConspectusWater-in-salt electrolytes (WiSEs) are promising electrolytes for next-generation lithium-ion batteries (LIBs), offering critical advantages like nonflammability and improved safety. These electrolytes have extremely high salt concentrations and exhibit unique solvation structures and transport mechanisms dominated by the formation of ion networks and aggregates. These ion networks are central to the performance of WiSEs, govern the transport properties and stability of the electrolyte, deviating from conventional dilute aqueous or organic electrolytes.
View Article and Find Full Text PDFFoods
January 2025
College of Food Science and Engineering, Jilin Agricultural University, Changchun 130118, China.
Chicken with prepared via pressure cooking is a traditional Chinese delicacy with great potential for food development. Optimizing its cooking time is crucial. In this study, chicken and were pressure-cooked for different amounts of time (20 min, 25 min, 30 min, 35 min, and 40 min).
View Article and Find Full Text PDFFoods
December 2024
Departamento de Química Analítica, Instituto de Química para la Energía y el Medio Ambiente, Anexo Marie Curie, Universidad de Córdoba, 14071 Córdoba, Spain.
The current quality control of the dry-curing process in Iberian ham is performed with an olfactory evaluation by ham experts. The present study proposes to monitor the dry-curing process of Iberian ham using an objective analytical methodology that involves non-destructive sampling of the subcutaneous fat of the hams and a volatile profile analysis using gas chromatography-ion mobility spectrometry. Thirty-eight 100% Iberian acorn-fed hams were examined in total, with eighteen hams monitored during the post-salting stage and twenty during the drying-maturation stage.
View Article and Find Full Text PDFInt J Mol Sci
December 2024
Department of Molecular Pathology, Nara Medical University School of Medicine, Kashihara 634-8521, Japan.
Cancer sarcopenia is highly prevalent in patients with advanced cancer, which is closely related to the disease prognosis. Overcoming cancer sarcopenia is important for cancer treatment. Cystine and theanine (CT), antioxidant amino acids, have been applied to the nutritional intervention of various diseases but their effects remain unclear on cancer sarcopenia.
View Article and Find Full Text PDFMolecules
January 2025
School of Mechanical Engineering, Chongqing Three Gorges University, Chongqing 404100, China.
The ionic conductance in a charged nanopore exhibits a power-law behavior in low salinity-as has been verified in many experiments (G0∝c0α)-which is governed by surface charges. The surface charge inside a nanopore determines the zeta potential and ion distributions, which have a significant impact on ion transport, especially in a single-digit nanopore with potential leakage. However, precisely measuring surface charge density in a single-digit nanopore remains a challenge.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!