Purpose: In 2007 the two senior authors wrote a review on the structure and function of the endothelial glycocalyx layer (Weinbaum in Annu Rev Biomed Eng 9:121-167, 2007). Since then there has been an explosion of interest in this hydrated gel-like structure that coats the luminal surface of endothelial cells that line our vasculature due to its important functions in (A) basic vascular physiology and (B) vascular related diseases. This review will highlight the major advances that have occurred since our 2007 paper.

Methods: A literature search mainly focusing on the role of the glycocalyx in the two major areas described above was performed using electronic databases.

Results: In part (A) of this review, the new formulation of the century old Starling principle, now referred to as the Michel-Weinbaum glycoclayx model or revised Starling hypothesis, is described including new subtleties and physiological ramifications. New insights into mechanotransduction and release of nitric oxide due to fluid shear stress sensed by the glycocalyx are elaborated. Major advances in understanding the organization and function of glycocalyx components, and new techniques for measuring both its thickness and spatio-chemical organization based on super resolution, stochastic optical reconstruction microscopy (STORM) are presented. As discussed in part (B) of this review, it is now recognized that artery wall stiffness associated with hypertension and aging induces glycocalyx degradation, endothelial dysfunction and vascular disease. In addition to atherosclerosis and cardiovascular diseases, the glycocalyx plays an important role in lifestyle related diseases (e.g., diabetes) and cancer. Infectious diseases including sepsis, Dengue, Zika and Corona viruses, and malaria also involve the glycocalyx. Because of increasing recognition of the role of the glycocalyx in a wide range of diseases, there has been a vigorous search for methods to protect the glycocalyx from degradation or to enhance its synthesis in disease environments.

Conclusion: As we have seen in this review, many important developments in our basic understanding of GCX structure, function and role in diseases have been described since the 2007 paper. The future is wide open for continued GCX research.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7505222PMC
http://dx.doi.org/10.1007/s13239-020-00485-9DOI Listing

Publication Analysis

Top Keywords

glycocalyx
10
vascular physiology
8
physiology vascular
8
vascular diseases
8
structure function
8
major advances
8
role glycocalyx
8
glycocalyx degradation
8
diseases
7
vascular
5

Similar Publications

Diosmetin alleviates TNFα-induced liver inflammation by improving liver sinusoidal endothelial cell dysfunction.

Biomed Pharmacother

January 2025

Jagiellonian University, Faculty of Biochemistry, Biophysics and Biotechnology, Department of General Biochemistry, Gronostajowa 7, Kraków 30-387, Poland. Electronic address:

Sterile inflammation contributes to the development of many liver diseases including non-alcoholic fatty liver disease. Tumor necrosis factor alpha (TNFα) is a key cytokine driving liver inflammation primarily through pro-inflammatory activation of liver sinusoidal endothelial cells (LSEC). The knowledge of whether modulating LSEC activation can alleviate liver inflammation is scarce.

View Article and Find Full Text PDF

Syndecan-1 in the Serum of Deceased Kidney Donors as a Potential Biomarker of Kidney Function.

Transplant Proc

January 2025

Charles University, Faculty of Medicine in Hradec Kralove, Hradec Kralove, Czech Republic; Department of Anaesthesiology and Intensive Care, University Hospital Hradec Kralove, Hradec Kralove, Czech Republic; Faculty of Health Studies, Technical University in Liberec, Liberec, Czech Republic.

Background: The process of kidney transplantation remains the optimal treatment for end-stage renal disease, offering improved quality of life and increased survival rates compared to long-term dialysis. However, despite advances in surgical techniques, immunosuppression regimens, and post-operative care, there are still significant challenges in predicting the organ's status and long-term outcomes of transplantation. Among the many factors that influence graft survival, the quality of the donated organ plays a fundamental role.

View Article and Find Full Text PDF

Purpose Of Review: This review aims to examine recent advances in the understanding of injury-induced endotheliopathy and therapeutics to mitigate its development in critically injured patients.

Recent Findings: Clinical studies have clearly demonstrated that syndecan-1 ectodomains can be found in circulation after various types of trauma and injury and correlates with worse outcomes. As the mechanisms of endotheliopathy are better understood, pathologic hyperadhesive forms of von Willebrand factor, along with a relative deficiency of its cleaving enzyme, a disintegrin and metalloprotease with thrombospondin type I motifs, member 13 (ADAMTS13), have emerged as additional biomarkers.

View Article and Find Full Text PDF

The vascular endothelium and its endothelial glycocalyx contribute to the protection of the endothelial cells from exposure to high levels of sodium and help these structures maintain normal function by regulating vascular permeability due to its buffering effect. The endothelial glycocalyx has negative surface charges that bind sodium and limit sodium entry into cells and the interstitial space. High sodium levels can disrupt this barrier and allow the movement of sodium into cells and extravascular fluid.

View Article and Find Full Text PDF

Dysregulated autoantibodies targeting AGTR1 are associated with the accumulation of COVID-19 symptoms.

NPJ Syst Biol Appl

January 2025

BIH Center for Regenerative Therapies (BCRT), Julius Wolff Institute (JWI), and Berlin Institute of Health (BIH); all Charité Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health (BIH), 10117, Berlin, Germany.

Coronavirus disease 2019 (COVID-19) presents a wide spectrum of symptoms, the causes of which remain poorly understood. This study explored the associations between autoantibodies (AABs), particularly those targeting G protein-coupled receptors (GPCRs) and renin‒angiotensin system (RAS) molecules, and the clinical manifestations of COVID-19. Using a cross-sectional analysis of 244 individuals, we applied multivariate analysis of variance, principal component analysis, and multinomial regression to examine the relationships between AAB levels and key symptoms.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!