A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Lysis and direct detection of coliforms on printed paper-based microfluidic devices. | LitMetric

Lysis and direct detection of coliforms on printed paper-based microfluidic devices.

Lab Chip

Department of Materials Science and Engineering, University of Michigan, Ann Arbor, MI 48109, USA.

Published: November 2020

Coliforms are one of the most common families of bacteria responsible for water contamination. Certain coliform strains can be extremely toxic, and even fatal if consumed. Current technologies for coliform detection are expensive, require multiple complicated steps, and can take up to 24 hours to produce accurate results. Recently, open-channel, paper-based microfluidic devices have become popular for rapid, inexpensive, and accurate bioassays. In this work, we have created an integrated microfluidic coliform lysis and detection device by fabricating customizable omniphilic regions via direct printing of omniphilic channels on an omniphobic, fluorinated paper. This paper-based device is the first of its kind to demonstrate successful cell lysing on-chip, as it can allow for the flow and control of both high and low surface tension liquids, including different cell lysing agents. The fabricated microfluidic device was able to successfully detect E. coli, via the presence of the coliform-specific enzyme, β-galactosidase, at a concentration as low as ∼104 CFU mL-1. Further, E. coli at an initial concentration of 1 CFU mL-1 could be detected after only 6 hours of incubation. We believe that these devices can be readily utilized for real world E. coli contamination detection in multiple applications, including food and water safety.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8496987PMC
http://dx.doi.org/10.1039/d0lc00665cDOI Listing

Publication Analysis

Top Keywords

paper-based microfluidic
8
microfluidic devices
8
cell lysing
8
cfu ml-1
8
lysis direct
4
detection
4
direct detection
4
detection coliforms
4
coliforms printed
4
printed paper-based
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!