In this paper, the electronic properties of a carbon allotrope, graphene with a kagome lattice structure, are investigated. Spin-polarized density functional theory (DFT) calculations with Grimme dispersion corrections were done. Bond lengths, electronic band structure, and projected density of states were calculated. Electronic band structure calculations show kagome flat-band formation with higher d-orbital contributed bonding behavior than the pristine graphene structure. The structural parameters and electronic band results of this 2D carbon allotrope show wider possible usage in many applications from desalination membranes to possible high-temperature superconductors.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7494512 | PMC |
http://dx.doi.org/10.1016/j.cplett.2020.138006 | DOI Listing |
J Chem Theory Comput
January 2025
Physics Postgraduate Program, Institute of Physics, University of Brasília, 70910-900 Brasília-DF, Brazil.
Two-dimensional (2D) nanomaterials are at the forefront of potential technological advancements. Carbon-based materials have been extensively studied since synthesizing graphene, which revealed properties of great interest for novel applications across diverse scientific and technological domains. New carbon allotropes continue to be explored theoretically, with several successful synthesis processes for carbon-based materials recently achieved.
View Article and Find Full Text PDFJ Mol Model
January 2025
PG & Research Department of Mathematics, Sanatana Dharma College, Kerala University, Alappuzha, Kerala, 688003, India.
Holey nanographene, an allotrope of carbon arranged in two dimensions, has gained remarkable attention as a nanomaterial with several potential uses in numerous industries, such as electronics, energy storage, healthcare, and environmental cleanup, because of its high carrier mobility, flexibility, transparency, high surface area, conductivity, and chemical stability. The fundamental holey nanographene is assembled in a linear form to create the holey nanographene chain (HNC) that is being discussed. To fully utilize it in various applications, it is essential to comprehend the basic ideas guiding its behavior at the nanoscale; for that, we find various topological indices for this holey nanographene chain using the cut method.
View Article and Find Full Text PDFJ Phys Chem A
January 2025
Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109, United States.
Given their molecular properties and electronic structure, graphyne and graphdiyne are promising materials with numerous applications in different fields of material science. Dehydrobenzoannules (DBAs) are candidates that can serve as building blocks for synthesizing and designing new 2D carbon allotropes; however, only a few graphynes have been produced on a practical scale. Herein, we present our investigation of three DBAs, which serve as a model to understand the relationship between the structure and property, contributing to 2D carbon allotropes' rational design and synthetic effort.
View Article and Find Full Text PDFBiomed Mater
January 2025
Chemistry, Manipal University Jaipur, Jaipur, Jaipur, 303007, INDIA.
Hydroxyapatite (HAP) nano-coatings on titanium alloys (for example, Ti6Al4V) have been used for prosthetic orthopedic implants in recent decades due to their osseointegration, bioactivity, and biocompatibility. HAP is brittle with low mechanical strength and poor adhesion on metallic surfaces, which limits its durability and bioactivity. Surface modification techniques have alleviated the imperfection of biomaterials by coating the substrate.
View Article and Find Full Text PDFDalton Trans
January 2025
School of Energy Resources, China University of Geosciences (Beijing), Beijing 100083, P.R. China.
Graphdiyne (GDY), which is composed of benzene rings and acetylene linkage units, is a new allotrope of carbon material. In particular, the large triangular pores of GDY, with a diameter of 5.4 Å, theoretically predict a higher lithium embedding density than traditional graphite anodes, making it a promising candidate for energy storage materials in lithium-ion (Li-ion) batteries.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!