Nuclear spins in the solid state are both a cause of decoherence and a valuable resource for spin qubits. In this work, we demonstrate control of isolated Si nuclear spins in silicon carbide (SiC) to create an entangled state between an optically active divacancy spin and a strongly coupled nuclear register. We then show how isotopic engineering of SiC unlocks control of single weakly coupled nuclear spins and present an ab initio method to predict the optimal isotopic fraction that maximizes the number of usable nuclear memories. We bolster these results by reporting high-fidelity electron spin control (F = 99.984(1)%), alongside extended coherence times (Hahn-echo T = 2.3 ms, dynamical decoupling T > 14.5 ms), and a >40-fold increase in Ramsey spin dephasing time (T*) from isotopic purification. Overall, this work underlines the importance of controlling the nuclear environment in solid-state systems and links single photon emitters with nuclear registers in an industrially scalable material.

Download full-text PDF

Source
http://dx.doi.org/10.1038/s41563-020-00802-6DOI Listing

Publication Analysis

Top Keywords

nuclear spins
16
control single
8
nuclear
8
silicon carbide
8
coupled nuclear
8
entanglement control
4
single nuclear
4
spins
4
spins isotopically
4
isotopically engineered
4

Similar Publications

Dynamic nuclear polarization (DNP) and emerging quantum technologies rely on the spin transfer in electron-nuclear hybrid quantum systems. Spin transfers might be suppressed by larger couplings, e.g.

View Article and Find Full Text PDF

Magic-NOVEL: Suppressing electron-electron coupling effects in pulsed DNP.

J Chem Phys

January 2025

Center for Quantum and Topological Systems, New York University Abu Dhabi, P.O. Box 129188, Abu Dhabi, United Arab Emirates.

Pulsed dynamic nuclear polarization (DNP) enhances the nuclear magnetic resonance sensitivity by coherently transferring electron spin polarization to dipolar coupled nuclear spins. Recently, many new pulsed DNP techniques such as NOVEL, TOP, XiX, TPPM, and BEAM have been introduced. Despite significant progress, numerous challenges remain unsolved.

View Article and Find Full Text PDF

In solid-state nuclear magnetic resonance (ssNMR) spectroscopy, fast magic angle spinning (MAS) is a potent technique that efficiently reduces line broadening and makes it possible to probe structural details of biological systems in high resolution. However, its utilization in studying complex heterogeneous biomaterials such as bone in their native state has been limited. The present study has demonstrated the feasibility of acquiring two-dimensional (2D) H-H correlation spectra for native bone using multiple-quantum/single-quantum correlation experiments (MQ/SQ) at fast MAS (70 kHz).

View Article and Find Full Text PDF

The present work reports on the preparation, characterization, and evaluation of a set of novel triphenyl-modified silica-based stationary phases without and with embedded ion-exchange sites for mixed-mode liquid chromatography. The three synthesized triphenyl phases differed in additionally incorporated ion-exchange sites. In one embodiment, allyltriphenylsilane was bonded to thiol-modified silica by thiol-ene click reaction, leading to particles with no ion-exchange sites.

View Article and Find Full Text PDF

Mineral-Mediated Epitaxial Growth of CoO Nanoparticles for Efficient Electrochemical HO Activation.

ACS Nano

December 2024

Engineering Research Center of Nano-Geomaterials of Ministry of Education, China University of Geosciences, Wuhan 430074, China.

Solution-phase epitaxy is a versatile method to synthesize functional nanomaterials with customized properties, where supports play a central role as they not only serve as nucleation templates but also greatly affect the local electronic structures. However, developing functional supports remains a great challenge. Herein, inspired by the commonly observed epitaxy of minerals in the natural environment, we report using calcination-modified kaolinite as the support for the epitaxial growth of hexagonal CoO nanoparticles (-CoO NPs), which enables over 40 times higher mass-specific activity toward HO electrochemical activation than the counterpart without the support.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!