Recapitulating macro-scale tissue self-organization through organoid bioprinting.

Nat Mater

Laboratory of Stem Cell Bioengineering, Institute of Bioengineering, School of Life Sciences and School of Engineering, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland.

Published: January 2021

Bioprinting promises enormous control over the spatial deposition of cells in three dimensions, but current approaches have had limited success at reproducing the intricate micro-architecture, cell-type diversity and function of native tissues formed through cellular self-organization. We introduce a three-dimensional bioprinting concept that uses organoid-forming stem cells as building blocks that can be deposited directly into extracellular matrices conducive to spontaneous self-organization. By controlling the geometry and cellular density, we generated centimetre-scale tissues that comprise self-organized features such as lumens, branched vasculature and tubular intestinal epithelia with in vivo-like crypts and villus domains. Supporting cells were deposited to modulate morphogenesis in space and time, and different epithelial cells were printed sequentially to mimic the organ boundaries present in the gastrointestinal tract. We thus show how biofabrication and organoid technology can be merged to control tissue self-organization from millimetre to centimetre scales, opening new avenues for drug discovery, diagnostics and regenerative medicine.

Download full-text PDF

Source
http://dx.doi.org/10.1038/s41563-020-00803-5DOI Listing

Publication Analysis

Top Keywords

tissue self-organization
8
recapitulating macro-scale
4
macro-scale tissue
4
self-organization
4
self-organization organoid
4
organoid bioprinting
4
bioprinting bioprinting
4
bioprinting promises
4
promises enormous
4
enormous control
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!