Objective: The aims of this study were: 1) to evaluate the effect of sintering temperature on microstructure, density and flexural strength of a 3Y-TZP/TiO composite containing 12.5 wt% of TiO compared to 3Y-TZP specimens (control); 2) to compare 3Y-TZP with the experimental 3Y-TZP/TiO composite, both sintered at 1400 °C, with respect to the following parameters: optical properties, characteristic strength, Weibull modulus, fatigue behavior, induction of osteoblasts proliferation and differentiation (mineralization nodules formation).
Methods: The 3Y-TZP and 3Y-TZP/TiO powders were uniaxially pressed and sintered at 1200 °C, 1300 °C, 1400 °C or 1500 °C for one hour in a furnace. The microstructural analysis consisted of X-ray diffraction and scanning electron microscopy. The density was measured by the Archimedes' principle and the flexural strength was obtained by the biaxial flexure test. The optical properties were measured using a spectrophotometer operating in the visible light wavelength range. The step-stress accelerated life testing was performed by the pneumatic mechanical cycler and the biological behavior achieved by using osteoblast-like cells (Osteo-1 cell line).
Results: Tetragonal zirconia was identified in all groups and cubic zirconia was identified only at 3Y-TZP group. The addition of TiO decreased the values of density and flexural strength of the composite 3Y-TZP/TiO in relation to 3Y-TZP regardless of the sintering temperature. The color difference between the two materials was not significant regarding L*a*b* parameters. The composite showed higher probability of failure, and induced higher proliferation and differentiation than control.
Significance: The composite developed have good aesthetic and biologics properties. However, its microstructure and mechanical properties need to be improved for future dental implant applications.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.dental.2020.08.014 | DOI Listing |
Sci Rep
December 2024
Department of Engineering, Norfolk State University, Norfolk, USA.
We report a controlled deposition process using atmospheric plasma to fabricate silver nanoparticle (AgNP) structures on polydimethylsiloxane (PDMS) substrates, essential for stretchable electronic circuits in wearable devices. This technique ensures precise printing of conductive structures using nanoparticles as precursors, while the relationship between crystallinity and plasma treatment is established through X-ray diffraction (XRD) analysis. The XRD studies provide insights into the effects of plasma parameters on the structural integrity and adhesion of AgNP patterns, enhancing our understanding of substrate stretchability and bendability.
View Article and Find Full Text PDFSci Rep
December 2024
School of Energy Science and Engineering, Central South University, Changsha, 410083, China.
A three-dimensional numerical model of the vacuum sintering furnace was established, combined with the custom program of temperature-voltage feedback regulation. Through simulationand experimental validation, the heating and holding stage as well as the thermal hysteresis phenomenon of the furnace were analyzed, a dimensionless quantity of hysteresis temperature difference was proposed and calculated, the distribution of the electric field and temperature uniformity of the furnace were discussed in detail, while the structural improvement approach was proposed based on simulation. The results show that: during the heating process, the maximum of thermal hysteresis temperature difference between the graphite cylinder and the heating tube is 0.
View Article and Find Full Text PDFChemSusChem
December 2024
Green Carbon Research Center, Korea Research Institute of Chemical Technology, Daejeon, 34114, Republic of Korea.
Pentose oxidation and reduction, processes yielding value-added sugar-derived acids and alcohols, typically involve separate procedures necessitating distinct reaction conditions. In this study, a novel one-pot reaction for the concurrent production of xylonic acid and xylitol from xylose is proposed. This reaction was executed at ambient temperature in the presence of a base, eliminating the need for external gases, by leveraging Pt-supported catalysts.
View Article and Find Full Text PDFNanomaterials (Basel)
December 2024
Italian National Agency for New Technologies, Energy and Sustainable Economic Development (ENEA), Portici Research Centre, P.le E. Fermi 1, Portici, 80055 Naples, Italy.
In recent years, the morphology control of semiconductor nanomaterials has been attracting increasing attention toward maximizing their functional properties and reaching their end use in real-world devices. However, the development of easy and cost-effective methods for preparing large-scale patterned semiconductor structures on flexible temperature-sensitive substrates remains ever in demand. In this study, vapor post-treatment (VPT) is investigated as a potential, simple and low-cost post-preparative method to morphologically modify gravure-printed zinc oxide (ZnO) nanoparticulate thin films at low temperatures.
View Article and Find Full Text PDFJ Funct Biomater
November 2024
Siegfried Weller Research Institute, Department of Trauma and Reconstructive Surgery, Eberhard Karls University Tübingen, BG Trauma Center Tübingen, 72076 Tübingen, Germany.
Due to the chemical composition and structure of the target tissue, autologous bone grafting remains the gold standard for orthopedic applications worldwide. However, ongoing advancements in alternative grafting materials show that 3D-printed synthetic biomaterials offer many advantages. For instance, they provide high availability, have low clinical limitations, and can be designed with a chemical composition and structure comparable to the target tissue.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!