Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
The protein-only hypothesis predicts that infectious mammalian prions are composed solely of PrP, a misfolded conformer of the normal prion protein, PrP. However, to date, all wild type protein-only PrP preparations lack significant levels of prion infectivity. Using a systemic biochemical approach, our laboratory isolated and identified two different endogenous cofactor molecules, RNA (Deleault et al., 2003 [50]; Deleault et al., 2007 [59]) and phosphatidylethanolamine (Deleault et al., 2012 [61]; Deleault et al., 2012 [18]), which facilitate the formation of prions with high levels of specific infectivity, leading us to propose to the alternative hypothesis that cofactor molecules are required to form wild type infectious prions (Deleault et al., 2007 [59]; Deleault et al., 2012 [18]; Geoghegan et al., 2007 [57]). In addition, we found that purified cofactor molecules restrict the strain properties of chemically defined infectious prions (Deleault et al., 2012 [18]), suggesting a "cofactor selection" model in which natural variation in the distribution of strain-specific cofactor molecules in different parts of the brain may be responsible for strain-dependent patterns of neurotropism (Deleault et al., 2012 [18]; Geoghegan et al., 2007 [57]).
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7768309 | PMC |
http://dx.doi.org/10.1016/bs.pmbts.2020.07.009 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!