Motion control is widely used in industrial applications since machinery, robots, conveyor bands use smooth movements in order to reach a desired position decreasing the steady error and energy consumption. In this paper, a new Proportional-Integral-Derivative (PID) -type fuzzy logic controller (FLC) tuning strategy that is based on direct fuzzy relations is proposed in order to compute the PID constants. The motion control algorithm is composed by PID-type FLC and S-curve velocity profile, which is developed in C/C++ programming language; therefore, a license is not required to reproduce the code among embedded systems. The self-tuning controller is carried out online, it depends on error and change in error to adapt according to the system variations. The experimental results were obtained in a linear platform integrated by a direct current (DC) motor connected to an encoder to measure the position. The shaft of the motor is connected to an endless screw; a cart is placed on the screw to control its position. The rise time, overshoot, and settling time values measured in the experimentation are 0.124 s, 8.985% and 0.248 s, respectively. These results presented in part 6 demonstrate the performance of the controller, since the rise time and settling time are improved according to the state of the art. Besides, these parameters are compared with different control architectures reported in the literature. This comparison is made after applying a step input signal to the DC motor.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7570543PMC
http://dx.doi.org/10.3390/s20185323DOI Listing

Publication Analysis

Top Keywords

motion control
12
fuzzy logic
8
motor connected
8
rise time
8
settling time
8
control
5
pid-type fuzzy
4
logic controller-based
4
controller-based approach
4
approach motion
4

Similar Publications

Background: : Neuromuscular re-education has focused on improving motor activities in patients with pathologies by retraining the nervous system. However, this has not yet been investigated in healthy individuals. Voluntary isometric contractions at maximal muscle shortening (VICAMS) is a new technique with the same objective.

View Article and Find Full Text PDF

Advancements in wearable robots aim to improve user motion, motor control, and overall experience by minimizing energetic cost (EC). However, EC is challenging to measure and it is typically indirectly estimated through respiratory gas analysis. This study introduces a novel EMG-based objective function that captures individuals' natural energetic expenditure during walking.

View Article and Find Full Text PDF

Muscle Fiber-Inspired High-Performance Strain Sensors for Motion Recognition and Control.

Langmuir

January 2025

Henan Province Engineering Technology Research Center of MEMS Manufacturing and Applications, School of Mechanics and Safety Engineering, Zhengzhou University, Zhengzhou 450001, China.

The rapid development of wearable technology, flexible electronics, and human-machine interaction has brought about revolutionary changes to the fields of motion analysis and physiological monitoring. Sensors for detecting human motion and physiological signals have become a hot topic of current research. Inspired by the muscle fiber structure, this paper proposed a highly stable strain sensor that was composed of stretchable Spandex fibers (SPF), multiwalled carbon nanotubes (MWCNTs), and silicone rubber (Ecoflex).

View Article and Find Full Text PDF

Lightly touching a solid object reduces postural sway. Here, we determine the effect of artificially modifying haptic feedback for balance. Participants stood with their eyes closed, lightly gripping a manipulandum that moved synchronously with body sway to systematically enhance or attenuate feedback gain between +2 and -2, corresponding to motion in the same or opposite direction to the body, respectively.

View Article and Find Full Text PDF

Purpose: Previous studies reported that anterior knee pain (AKP) occurs with an incidence of 32% after opening-wedge high tibial osteotomy (OWHTO). However, the biomechanical effects of this procedure on patellofemoral joints (PFJs) remain unclear. We aimed to quantify the changes in the kinematics and cartilage conditions of the PFJ during stair climbing before and after OWHTO.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!