Highly luminescent indium phosphide zinc sulfide (InPZnS) quantum dots (QDs), with zinc selenide/zinc sulfide (ZnSe/ZnS) shells, were synthesized. The QDs were modified via a post-synthetic ligand exchange reaction with 3-mercaptopropionic acid (MPA) and 11-mercaptoundecanoic acid (MUA) in different MPA:MUA ratios, making this study the first investigation into the effects of mixed ligand shells on InPZnS QDs. Moreover, this article also describes an optimized method for the correlation of the QD size vs. optical absorption of the QDs. Upon ligand exchange, the QDs can be dispersed in water. Longer ligands (MUA) provide more stable dispersions than short-chain ligands. Thicker ZnSe/ZnS shells provide a better photoluminescence quantum yield (PLQY) and higher emission stability upon ligand exchange. Both the ligand exchange and the optical properties are highly reproducible between different QD batches. Before dialysis, QDs with a ZnS shell thickness of ~4.9 monolayers (ML), stabilized with a mixed MPA:MUA (mixing ratio of 1:10), showed the highest PLQY, at ~45%. After dialysis, QDs with a ZnS shell thickness of ~4.9 ML, stabilized with a mixed MPA:MUA and a ratio of 1:10 and 1:100, showed the highest PLQYs, of ~41%. The dispersions were stable up to 44 days at ambient conditions and in the dark. After 44 days, QDs with a ZnS shell thickness of ~4.9 ML, stabilized with only MUA, showed the highest PLQY, of ~34%.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7557590PMC
http://dx.doi.org/10.3390/nano10091858DOI Listing

Publication Analysis

Top Keywords

ligand exchange
16
qds zns
12
zns shell
12
shell thickness
12
thickness ~49
12
shells provide
8
provide stable
8
stable dispersions
8
quantum dots
8
qds
8

Similar Publications

Vanadium is a transition metal with important industrial, technological, biological, and biomedical applications widespread in the environment and in living beings. The different reactions that vanadium compounds (VCs) undergo in the presence of proteins, nucleic acids, lipids and metabolites under mild physiological conditions are reviewed. In the environment vanadium is present naturally or through anthropogenic sources, the latter having an environmental impact caused by the dispersion of VCs in the atmosphere and aquifers.

View Article and Find Full Text PDF

Solvent Engineering in Ligand Exchange of the Hole Transport Layer Enables High-Performance PbS Quantum Dot Solar Cells.

J Phys Chem Lett

January 2025

State Key Laboratory of Organic Electronics and Information Displays, Institute of Advanced Materials (IAM), School of Material Science and Engineering, Nanjing University of Posts and Telecommunications (NJUPT), 9 Wenyuan Rd., Nanjing 210023, China.

The performance of lead sulfide colloidal quantum dot (PbS-CQD) solar cells has long been hindered by interface defects in the transport layer. Traditionally, 1,2-ethanedithiol (EDT), used in solid-state ligand exchange, has been a common choice as the hole transport layer (HTL) in many PbS-CQD solar cells. However, the rapid reaction rate and chain length mismatch (shorter-chain EDT versus longer-chain oleic acid) during the ligand exchange process often introduce crack defects in the HTL film, resulting in an unexpected low performance.

View Article and Find Full Text PDF

The work establishes the salt of a tetra-cationic distibane, [LSb][CFSO] = [][OTf] (CFSO = OTf), stabilized by a bis(α-iminopyridine) ligand , defying the Coulombic repulsion. The synthetic approach involved a dehydrocoupling reaction when a mixture of and Sb(OTf) in a 1:1 ratio was treated with EtSiH/LiBEtH as the hydride source. Compound [][OTf] was also achieved from [LSbCl][OTf] as a precursor and using EtSiH.

View Article and Find Full Text PDF

Ligand-functionalized InP-based quantum dots (QDs) have been developed as an innovative class of nontoxic photosensitizer suitable for antimicrobial applications, aimed at reducing or preventing pathogen transmission from one host to another via high contact surfaces. A hot injection method followed by functionalization via ligand exchange with 9-anthracene carboxylic acid (ACA) yielded the desired core/shell InP/ZnSe/ZnS QDs. Transmission electron microscopy (TEM) revealed these QDs to be uniform in size (∼3.

View Article and Find Full Text PDF

Sigma 1 Receptor and Its Pivotal Role in Neurological Disorders.

ACS Pharmacol Transl Sci

January 2025

Department of Pharmacology and Toxicology, Faculty of Pharmacy, Cairo University, Cairo, Egypt.

Sigma 1 receptor (S1R) is a multifunctional, ligand-activated protein located in the membranes of the endoplasmic reticulum (ER). It mediates a variety of neurological disorders, including epilepsy, amyotrophic lateral sclerosis, Alzheimer's disease, Huntington's disease. The wide neuroprotective effects of S1R agonists are achieved by a variety of pro-survival and antiapoptotic S1R-mediated signaling functions.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!