The intervertebral disc exhibits complex mechanics due to its heterogeneous structure, inherent viscoelasticity, and interstitial fluid-matrix interactions. Sufficient fluid flow into the disc during low loading periods is important for maintaining mechanics and nutrient transport. However, there is a lack of knowledge on the effect of loading magnitude on time-dependent recovery behavior and the relative contribution of multiple recovery mechanisms during recovery. In most studies that have evaluated disc recovery behavior, a single load condition has been considered, making it difficult to compare findings across studies. Hence, the objective of this study was to quantify unloaded disc recovery behavior after compressive creep loading under a wide range of physiologically relevant stresses (0.2-2 MPa). First, the repeatability of disc recovery behavior was assessed. Once repeatable recovery behavior was confirmed, each motion segment was subject to three cycles of creep-recovery loading, where each cycle consisted of a 24-h creep at a pre-assigned load (100, 200, 300, 600, 900, or 1200 N), followed by an 18-h recovery period at a nominal load (10 N). Results showed that disc recovery behavior was strongly influenced by the magnitude of loading. The magnitude of instantaneous and time-dependent recovery deformations increased nonlinearly with an increase in compressive stress during creep. In conclusion, this study highlights that elastic deformation, intrinsic viscoelasticity, and poroelasticity all have substantial contributions to disc height recovery during low loading periods. However, their relative contributions to disc height recovery largely depend on the magnitude of loading. While loading history does not influence the contribution of the short-term recovery, the contribution of long-term recovery is highly sensitive to loading magnitude.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.jmbbm.2020.103881 | DOI Listing |
Cancer Cell Int
January 2025
Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy.
Background: Mounting evidence underline the relevance of macromolecular complexes in cancer. Integrins frequently recruit ion channels and transporters within complexes which behave as signaling hubs. A complex composed by β1 integrin, hERG1 K channel, the neonatal form of the Na channel Na 1.
View Article and Find Full Text PDFHandb Clin Neurol
January 2025
Department of Psychology, Université de Montréal, Montreal, QC, Canada; Center for Advanced Research in Sleep Medicine, Hôpital du Sacré-Cœur de Montréal, Centre intégré universitaire de santé et de services sociaux du Nord-de-l'Île-de Montréal, Montreal, QC, Canada. Electronic address:
Traumatic brain injury (TBI) is a serious public health concern and is one of the major causes of death and chronic disability in young individuals. Sleep-wake disturbances are among the most persistent and debilitating consequences of TBI and are reported by 50%-70% of TBI patients regardless of TBI severity. Excessive daytime sleepiness, fatigue, hypersomnia, and insomnia are the most common sleep disturbances in TBI patients.
View Article and Find Full Text PDFLife Sci Space Res (Amst)
February 2025
Department of Radiation Oncology, Wake Forest University School of Medicine. Winston-Salem, NC, USA. Electronic address:
Reduced weight-bearing during spaceflight has been associated with musculoskeletal degradation that risks astronaut health and performance in transit and upon reaching deep space destinations. Previous rodent experiments aboard the international space station (ISS) have identified that the spaceflight-induced molecular arthritic phenotype was characterized with an increase in oxidative stress. This study evaluated if treatment with a superoxide dismutase (SOD) mimetic on orbit could prevent spaceflight-induced damage to the knee and hip articular cartilage, and the menisci in rodents.
View Article and Find Full Text PDFAppl Nurs Res
February 2025
Nursing Department, Taipei Medical University-Shuang Ho Hospital, New Taipei City, Taiwan.
Background: The Patient Infotainment Terminal (PIT) plays a pivotal role in Smart Health, enabling hospitals to actively pursue the objective of fostering Shared Decision-Making. By providing General information, Medical information, and Entertainment options, the system fosters effective patient-clinician communication and significantly elevates the standard of care.
Objective: This study aimed to investigate how registered nurses utilized the PIT and prioritized functions based on their perception of importance and satisfaction to find out high-importance but low-satisfaction PIT functions.
Biosci Trends
January 2025
School of Pharmacy, Sungkyunkwan University, Suwon, Korea.
Alzheimer's disease (AD) is the most common type of dementia. Its incidence is rising rapidly as the global population ages, leading to a significant social and economic burden. AD involves complex pathologies, including amyloid plaque accumulation, synaptic dysfunction, and neuroinflammation.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!