Glycosaminoglycan depletion increases energy dissipation in articular cartilage under high-frequency loading.

J Mech Behav Biomed Mater

Department of Mechanical Engineering, University of Wisconsin-Madison, 1513 University Ave., Madison, WI, 53706, USA; Department of Biomedical Engineering, University of Wisconsin-Madison, 1550 University Ave., Madison, WI, 53706, USA; Department of Orthopedics and Rehabilitation, University of Wisconsin-Madison, 1111 Highland Ave., Madison, WI, 53705, USA. Electronic address:

Published: October 2020

High-frequency material behavior of cartilage at macroscopic lengths is not widely understood, despite a wide range of frequencies and contact lengths experienced in vivo. For example, cartilage at different stages of matrix integrity can experience high-frequency loading during traumatic impact, making high-frequency behavior relevant in the context of structural failure. Therefore, this study examined macroscopic dissipative and mechanical responses of intact and glycosaminoglycan (GAG)-depleted cartilage under previously unexplored high-frequency loading. These dynamic responses were complemented with the evaluation of quasi-static responses. A custom dynamic mechanical analyzer was used to obtain dynamic behavior, and stress relaxation testing was performed to obtain quasi-static behavior. Under high-frequency loading, cartilage energy dissipation increased with GAG depletion and decreased with strain; dynamic modulus exhibited opposite trends. Similarly, under quasi-static loading, equilibrium modulus and relaxation time of cartilage decreased with GAG depletion. The increased energy dissipation after GAG depletion under high-frequency loading was likely due to increased viscoelastic dissipation. These findings broaden our understanding of fundamental properties of cartilage as a function of solid matrix integrity in an unprecedented loading regime. They also provide a foundation for analyzing energy dissipation associated with cartilage failure induced by traumatic impact.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jmbbm.2020.103876DOI Listing

Publication Analysis

Top Keywords

high-frequency loading
20
energy dissipation
16
gag depletion
12
cartilage
8
matrix integrity
8
traumatic impact
8
high-frequency
7
loading
7
dissipation
5
glycosaminoglycan depletion
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!