The NLRP3 inflammasome is a component of the innate immune system involved in the production of proinflammatory cytokines. Aberrant activation by a wide range of exogenous and endogenous signals can lead to chronic, low-grade inflammation. It has attracted a great deal of interest as a drug target due to the association with diseases of large unmet medical need such as Alzheimer's disease, Parkinson's disease, arthritis, and cancer. To date, no drugs specifically targeting inhibition of the NLRP3 inflammasome have been approved. In this work, we used the known NLRP3 inflammasome inhibitor CP-456,773 (aka CRID3 or MCC 950) as our starting point and undertook a Structure-Activity Relationship (SAR) analysis and subsequent scaffold-hopping exercise. This resulted in the rational design of a series of novel ester-substituted urea compounds that are highly potent and selective NLRP3 inflammasome inhibitors, as exemplified by compounds 44 and 45. It is hypothesized that the ester moiety acts as a highly permeable delivery vehicle and is subsequently hydrolyzed to the carboxylic acid active species by carboxylesterase enzymes. These molecules are greatly differentiated from the state-of-the-art and offer potential in the treatment of NLRP3-driven diseases, particularly where tissue penetration is required.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.bmcl.2020.127560DOI Listing

Publication Analysis

Top Keywords

nlrp3 inflammasome
20
inflammasome inhibitors
8
nlrp3
5
inflammasome
5
discovery series
4
series ester-substituted
4
ester-substituted nlrp3
4
inhibitors nlrp3
4
inflammasome component
4
component innate
4

Similar Publications

The opioid epidemic endangers not only public health but also social and economic welfare. Growing clinical evidence indicates that chronic use of prescription opioids may contribute to an elevated risk of ischemic stroke and negatively impact post-stroke recovery. In addition, NLRP3 inflammasome activation has been related to several cerebrovascular diseases, including ischemic stroke.

View Article and Find Full Text PDF

The NLRP3 inflammasome plays a critical role in innate immunity and inflammatory diseases. NIMA-related kinase 7 (NEK7) is essential for inflammasome activation, and its interaction with NLRP3 is enhanced by K efflux. However, the mechanism by which K efflux promotes this interaction remains unknown.

View Article and Find Full Text PDF

Group 3 Innate Lymphoid Cells: A Potential Therapeutic Target for Steroid Resistant Asthma.

Clin Rev Allergy Immunol

December 2024

Division of Allergy and Clinical Immunology, The Johns Hopkins Asthma & Allergy Center, Johns Hopkins University School of Medicine, 5501 Hopkins Bayview Circle, Room 3B.71, Baltimore, MD, 21224, USA.

Asthma is a chronic airway inflammatory disease that affects millions globally. Although glucocorticoids are a mainstay of asthma treatment, a subset of patients show resistance to these therapies, resulting in poor disease control and increased morbidity. The complex mechanisms underlying steroid-resistant asthma (SRA) involve Th1 and Th17 lymphocyte activity, neutrophil recruitment, and NLRP3 inflammasome activation.

View Article and Find Full Text PDF

Neohesperidin Improves Depressive-Like Behavior Induced by Chronic Unpredictable Mild Stress in Mice.

Neurochem Res

January 2025

Precision Pharmacy & Drug Development Center, Department of Pharmacy, Tangdu Hospital, Air Force Medical University, Xi'an, 710038, China.

Depression is a common and complex neuropsychiatric disorder affecting people of all ages worldwide, associated with high rates of relapse and disability. Neohesperidin (NEO) is a dietary flavonoid with applications in therapeutics; however, its effects on depressive-like behavior remain unknown. Here, we evaluated the effects of NEO on depressive-like behavior induced by chronic and unpredictable mild stress (CUMS).

View Article and Find Full Text PDF

Background: The misfolding and aggregation of the tau protein into neurofibrillary tangles constitute a central feature of tauopathies. Traumatic brain injury (TBI) has emerged as a potential risk factor, triggering the onset and progression of tauopathies. Our previous research revealed distinct polymorphisms in soluble tau oligomers originating from single versus repetitive mild TBIs.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!