DDIT4 Licenses Only Healthy Cells to Proliferate During Injury-induced Metaplasia.

Gastroenterology

Division of Gastroenterology, Department of Internal Medicine, Washington University School of Medicine, St. Louis, Missouri; Department of Pathology and Immunology, Washington University School of Medicine, St Louis, Missouri; Department of Developmental Biology, Washington University School of Medicine, St Louis, Missouri. Electronic address:

Published: January 2021

Background And Aims: In stomach, metaplasia can arise from differentiated chief cells that become mitotic via paligenosis, a stepwise program. In paligenosis, mitosis initiation requires reactivation of the cellular energy hub mTORC1 after initial mTORC1 suppression by DNA damage induced transcript 4 (DDIT4 aka REDD1). Here, we use DDIT4-deficient mice and human cells to study how metaplasia increases tumorigenesis risk.

Methods: A tissue microarray of human gastric tissue specimens was analyzed by immunohistochemistry for DDIT4. C57BL/6 mice were administered combinations of intraperitoneal injections of high-dose tamoxifen (TAM) to induce spasmolytic polypeptide-expressing metaplasia (SPEM) and rapamycin to block mTORC1 activity, and N-methyl-N-nitrosourea (MNU) in drinking water to induce spontaneous gastric tumors. Stomachs were analyzed for proliferation, DNA damage, and tumor formation. CRISPR/Cas9-generated DDIT4 and control human gastric cells were analyzed for growth in vitro and in xenografts with and without 5-fluorouracil (5-FU) treatment.

Results: DDIT4 was expressed in normal gastric chief cells in mice and humans and decreased as chief cells became metaplastic. Paligenotic Ddit4 chief cells maintained constitutively high mTORC1, causing increased mitosis of metaplastic cells despite DNA damage. Lower DDIT4 expression correlated with longer survival of patients with gastric cancer. 5-FU-treated DDIT4 human gastric epithelial cells had significantly increased cells entering mitosis despite DNA damage and increased proliferation in vitro and in xenografts. MNU-treated Ddit4 mice had increased spontaneous tumorigenesis after multiple rounds of paligenosis induced by TAM.

Conclusions: During injury-induced metaplastic proliferation, failure of licensing mTORC1 reactivation correlates with increased proliferation of cells harboring DNA damage, as well as increased tumor formation and growth in mice and humans.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7857017PMC
http://dx.doi.org/10.1053/j.gastro.2020.09.016DOI Listing

Publication Analysis

Top Keywords

dna damage
20
chief cells
16
human gastric
12
cells
11
ddit4
9
tumor formation
8
in vitro xenografts
8
mice humans
8
despite dna
8
increased proliferation
8

Similar Publications

Los olvidados: Non-BRCA variants associated with Hereditary breast cancer in Mexican population.

Breast Cancer Res

January 2025

Servicio de Oncología, Centro Universitario Contra el Cáncer (CUCC), Hospital Universitario "Dr. José Eleuterio González", Universidad Autónoma de Nuevo León, 66451, Monterrey, Nuevo León, México.

Background: Hereditary predisposition to breast and ovarian cancer syndrome (HBOC) is a pathological condition with increased cancer risk, including breast (BC), ovarian cancer (OC), and others. HBOC pathogenesis is caused mainly by germline pathogenic variants (GPV) in BRCA1 and BRCA2 genes. However, other relevant genes are related to this syndrome diagnosis, prognosis, and treatment, including TP53, PALB2, CHEK2, ATM, etc.

View Article and Find Full Text PDF

Bi-targeting of thioredoxin 1 and telomerase by thiotert promotes cell death of myelodysplastic syndromes and lymphoma.

Biol Direct

January 2025

Department of Clinical Laboratory, Affiliated Hangzhou First People's Hospital, School of Medicine, Westlake University, Hangzhou, Zhejiang, China.

Thioredoxin1 (TRX1) and telomerase are both attractive oncology targets that are tightly implicated in tumor initiation and development. Here, we reported that the 6-dithio-2-deoxyguanosine analog thiotert exhibits an effective cytotoxic effect on myelodysplastic syndromes (MDS) cell SKM-1 and lymphoma cell U-937. Further studies confirmed that thiotert effectively disrupts cellular redox homeostasis, as evidenced by elevated intracellular reactive oxygen species (ROS) levels, increased MnSOD, accelerated DNA impairment, and activated apoptosis signal.

View Article and Find Full Text PDF

Deep learning reveals diverging effects of altitude on aging.

Geroscience

January 2025

Center for Healthy Aging, Department of Cellular and Molecular Medicine, University of Copenhagen, Copenhagen, Denmark.

Aging is influenced by a complex interplay of multifarious factors, including an individual's genetics, environment, and lifestyle. Notably, high altitude may impact aging and age-related diseases through exposures such as hypoxia and ultraviolet (UV) radiation. To investigate this, we mined risk exposure data (summary exposure value), disease burden data (disability-adjusted life years (DALYs)), and death rates and life expectancy from the Global Health Data Exchange (GHDx) and National Data Management Center for Health of Ethiopia for each subnational region of Ethiopia, a country with considerable differences in the living altitude.

View Article and Find Full Text PDF

DNA is subject to continual damage, leaving each cell with thousands of individual DNA lesions at any given moment. The efficiency of DNA repair means that most known classes of lesion have a half-life of minutes to hours, but the extent to which DNA damage can persist for longer durations remains unknown. Here, using high-resolution phylogenetic trees from 89 donors, we identified mutations arising from 818 DNA lesions that persisted across multiple cell cycles in normal human stem cells from blood, liver and bronchial epithelium.

View Article and Find Full Text PDF

Pyrithione zinc alters mismatch repair to trigger tumor immunogenicity.

Oncogene

January 2025

State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, China.

Mismatch repair deficiency (dMMR) cancers are highly sensitive to immunotherapy, but only account for a small fraction of cancer patients. How to increase immunotherapy efficacy on MMR-proficient (pMMR) cancer is still a major challenge. This study demonstrates that pyrithione zinc (PYZ), an FDA-approved drug, can enhance tumor immunogenicity via altering MMR and activating STING signaling.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!